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ABSTRACT
In this thesis, we apply the pattern recognition and data pro-
cessing strengths of machine learning to accomplish traffic
analysis objectives. Traffic analysis relies on the use of ob-
servable features of encrypted traffic in order to infer plain-
text contents. We apply a clustering technique to HTTPS
encrypted traffic on websites covering medical, legal and fi-
nancial topics and achieve accuracy rates ranging from 64%
- 99% when identifying traffic within each website. The to-
tal number of URLs considered on each page ranged from
176 to 366. We present our results along with a justification
of the machine learning techniques employed and an eval-
uation which explores the impact on accuracy of variations
in amount of training data, number of clustering algorithm
invocations, and convergence threshold. Our technique rep-
resents a significant improvement over previous techniques
which have achieved similar accuracy, albeit with the aid
of supporting assumptions simplifying traffic analysis. We
examine these assumptions more closely and present results
suggesting that two assumptions, browser cache configura-
tion and selection of webpages for evaluation, can have con-
siderable impact on analysis. Additionally, we propose a set
of minimum evaluation standards for improved quality in
traffic analysis evaluations.

1. INTRODUCTION
Learning theory provides powerful techniques for traffic anal-
ysis, an attack which uses observable traffic features such as
packet size and timing in order to infer the plaintext contents
of encrypted traffic. In this thesis, we introduce improved
machine learning approaches as a basis for measuring vul-
nerability of encrypted web traffic to traffic analysis. By
treating features extracted from traffic as data to be pro-
cessed and classified by machine learning techniques, we are
able to achieve accuracy rates ranging from 70% - 99% when
identifying traffic generated by URLs found in the same web-
page. The evaluation used between 176 and 366 URLs from
each website, and the websites were either legal, medical or
financial in nature. Furthermore, we evaluate our attack
with the browser cache and active content enabled, repre-
senting a significant improvement over the assumptions held
by previously proposed techniques. Our approach also com-
pares favorably against prior efforts with the browser cache
disabled and comparing only homepages, as we achieve 95%
accuracy over a set of 402 homepages while ignoring all data
about packet destination.

The core of our approach is a clustering technique which
produces a series of Gaussian Mixture Models (GMMs) for
each page we attempt to identify. Each GMM in the series
corresponds to a different second level domain seen in traffic
while loading a particular URL, where the second level do-
main associated with a packet is determined by the server’s
IP address. Rather than using a maximum likelihood ap-
proach for fitting the GMMs, we use a Bayesian technique
which both facilitates inferring the number of components in
each mixture and provides increased resilience against minor
variations in traffic. We apply the clustering approach over a
two-dimensional feature space representing pairs of outgoing
and incoming bursts of traffic seen in traffic to each specific
domain. We find that a clustering technique accommodates
the effects of caching well by calculating the likelihood of a
sample based only traffic which actually occurs. This stands

in contrast to techniques in which the model specifies a fixed
number of times that each value of each feature is expected
to occur, and then decreases the likelihood of the sample if
feature values occur less often than expected.

Previous work has shown that traffic analysis attacks can
achieve high accuracy when used in the web setting, subject
to various sets of supporting assumptions. In this thesis,
we argue that these assumptions have often been unrealis-
tic, tending to exaggerate traffic analysis vulnerability and
inflate the performance of previously proposed attacks. In
support of this claim, we present data regarding two of the
most common assumptions in order to measure their poten-
tial effect on the outcome of traffic analysis evaluations.

The most common assumption that we believe introduces
significant bias into results is the disabling of the browser
cache. In order to measure the effects of caching we conduct
a randomized browsing exercise on the website of a common
US bank, repeating the exercise with the cache both enabled
and disabled. Our results show that caching both decreases
the total amount of traffic and increases variations in the
traffic, thereby complicating traffic analysis. We also note
that many evaluations attempt to differentiate between a
fixed set of popular website homepages known in advance
to the attacker. We demonstrate that website homepages
generate more traffic than internal pages within websites,
thereby simplifying the task of traffic analysis. In further
support of this claim, we compare the accuracy of our own
technique when identifying traffic from website homepages
to accuracy when comparing pages within a single website.

Having presented evidence of the potential bias which com-
mon assumptions can introduce into evaluation results, we
also propose criteria for more accurate evaluations. Al-
though we do maintain that fully realistic simulations or
reconstructions of actual internet traffic are ultimately in-
tractable, this does not mean we should make no efforts to
harmonize the discrepancies we are aware of between simu-
lated traffic used in evaluations and actual real world traffic.
For example, evaluations should reflect the traffic diversity
caused by user specific content and by differences in browser
software and configurations, such as caching and common
types of plug-ins and active content. Additionally, evalua-
tions should focus on objectives which are relevant to the
privacy technology and threat model being considered. For
example, an adversary analyzing any system (such as SSH
tunnels, VPNs, etc.) that tunnels all web traffic through
a single connection must not assume that all traffic comes
from a fixed set of pages. In many cases, it may not even be
appropriate to assume that all traffic is web traffic.

In Section 2 we present the evaluation methodologies of pre-
vious work, and in Section 3 we critique these methodologies.
In Section 4 we suggest minimum standards for evaluation
of traffic analysis techniques. In Section 5 we present a new
traffic analysis technique in light of our proposed minimum
standards, and in Section 6 we evaluate our approach. Sec-
tion 7 concludes and discusses future work.

2. EVALUATIONS IN RELATED WORK
In this section we present the evaluation methodologies and
results of previous work. Correct interpretation and under-



Privacy Page Set Page Set Accuracy Single Site vs. Analysis Active Software
Author Technology Scope Size (%) Cache Homepages Primitive Content Stack

Hintz [9] SSL proxy Closed 5 100 ? Homepages Request ? IE5
∗Sun [12] SSL proxy Open 2,000 75 (TP) Off Mixed Request Off IE5

100,000 1.5 (FP)

†Cheng [4] HTTPS Closed 71 94 Off Single Site Request Off Netscape
Danezis [6] HTTPS Closed ? 89 n/a Single Site Request n/a n/a

Herrmann [8] SSH tunnel Closed 775 97 Off Homepages Packet ? Linux, FF 2.0
‡Dyer [7] SSH tunnel Closed 775 91 Off Homepages Packet ? Linux, FF 2.0
Liberatore [10] SSH tunnel Closed 1000 75 Off Homepages Packet Flash Linux, FF1.5
Bissias [3] SSH tunnel Closed 100 23 ? Homepages Packet ? Linux, FF1.0

Herrmann [8] Tor Closed 775 3 Off Homepages Packet ? Linux, FF2.0
Panchenko [11] Tor Closed 775 55 Off Homepages Packet Off Linux, FF3
Panchenko [11] Tor Open 5 56-73 (TP) Off Homepages Packet Off Linux, FF3

1,000 .05-.89 (FP)

Coull [5] Anonymous Open 50 49 On Homepages NetFlow Flash & FF
Trace 100 .18 Scripts

∗Sun gathered pages from a link database and hence likely used both homepages and internal pages from a variety of websites.
†Cheng set the cache to 200KB, which we regard as effectively off. The analyzer trained on 489 pages, but only 71 were actually tested.
‡Dyer evaluated his attack using datasets released by Herrmann and Liberatore, focusing on Herrmann’s dataset.

Table 1: Summary of related works. Note that “?” indicates the author did not specify the property, “n/a” indicates the
property does not apply to the author, and “FF” indicates Firefox.

standing of the results requires appreciating the environment
in which those results were obtained. Therefore, any accu-
racy measurements must be regarded as relative to a set of
underlying assumptions. Note that the degree to which an
assumption is reasonable depends on the privacy technology
and the threat model being considered in the evaluation.

In considering previous work, it is helpful to separate re-
lated work into two separate categories based on the type of
privacy technology which is used in the evaluation. The
first category includes systems which function below the
application layer and are designed to not require support
from the website or browser. This category includes sys-
tems such as SSL, Wi-Fi, VPNs and SSH tunnels. The sec-
ond group includes systems such as the Tor browser bundle
that make modifications at the application layer (i.e. within
the browser). Common modifications include disabling the
cache and active page content, as these increase state, func-
tionality and binary vulnerabilities within the browser, all of
which could be exploited to compromise user privacy. Iron-
ically, although these measures address immediate concerns
of direct privacy violations, these modifications also increase
vulnerability to traffic analysis by reducing variations in user
traffic.

Although browser and application layer modifications can
powerfully increase user privacy, many of these modifica-
tions are poorly understood and unlikely to be pursued by
non-expert users. Rather, we believe that users are only
likely to use these features when the privacy technology they
are using includes an expertly configured browser. Hence,
problems arise when researchers apply modifications made
in expertly configured application layer systems to studies
of systems which run below the application layer. Although
users may plausibly deploy these application layer modifica-
tions while using privacy technologies which function below
the application layer, this is unlikely. Most likely, the end
effect has been that the introduction of these assumptions bi-

ases results towards appearing more severe, while introduc-
ing assumptions which researchers and practitioners easily
identify as being somewhat unrealistic.

While exaggerating vulnerability may appear safe from a
security standpoint, we argue that in this instance the op-
posite is true. Although some works have reported success
rates in excess of 90% using basic heuristics and machine
learning techniques applied to mundane features, encryp-
tion mechanisms remain widely deployed which include no
built-in defenses against traffic analysis attacks. The doubt
cast on traffic analysis results by generous assumptions has
actually increased security vulnerability as researchers and
developers decline to widely deploy traffic analysis defense
mechanisms. This doubt, evidenced by the security com-
munity’s response, persists even in the face of publications
concluding that encrypted channels do little to prevent an
attacker from learning the pages requested by a user [7].

Table 1 presents an overview of the evaluation techniques
used in prior work and the associated results. Note the
prevalence of non-default software configurations used with
systems which function below the application layer. The
columns are as follows:

Privacy Technology: The encryption or protection mech-
anism analyzed for traffic analysis vulnerability. Note that
some authors considered multiple mechanisms, and hence
appear twice.

Page Set Scope: Closed indicates the evaluation used a
fixed set of pages known to the attacker in advance. Open
indicates the evaluation used traffic from pages both of in-
terest and unknown to the attacker. For example, a closed
evaluation is appropriate for a setting where the attacker
can identify the traffic destination and corresponding web-
site, and can therefore enumerate all pages which exist on
that website. Open is appropriate for settings such as Tor



(a) (b)

Figure 1: Figures 1a and 1b were each generated by three random browsing sessions which loaded 72 pages within a bank
website multiple times. Figure 1a shows the cache disabled and Figure 1b shows the cache set to 1MB, 8MB and 64MB for
one session each. Each point represents the number of data packets in an individual page load as a fraction of the maximum
number of packets for that page on the same plot.

or SSH tunnels, where all web traffic is sent through a single
channel. Since the attacker is not given the destination of
the traffic, he must assume that the channel could contain
traffic to arbitrary webpages.

Page Set Size: For closed scope, the number of pages used
in the evaluation. For open scope, the number of pages of
interest to the attacker and the number of background traffic
pages, respectively.

Accuracy: For closed scope, the percent of pages correctly
identified. For open scope, the true positive (TP) rate of
correctly identifying pages of interest and false positive (FP)
rate of mistaking background traffic for interesting pages.

Cache: Off indicates browser caching was disabled. On
indicates caching was enabled to default size.

Single Site vs. Homepages: Single Site indicates all
pages used in the evaluation came from a single website.
Homepages indicates all pages used in the evaluation were
the homepages of different websites.

Analysis Primitive: The basic unit on which traffic anal-
ysis was conducted. Request indicates the analysis oper-
ated on the size of each object (e.g. image, style sheet,
etc.) loaded for each page. Packet indicates meta-data ob-
served from TCP packets. NetFlow indicates network traces
anonymized using NetFlow.

Active Content: Indicates whether Flash, JavaScript, Java
or any other plugins were enabled in the browser.

Software Stack: The OS and browser used in the evalua-
tion.

Several authors require discussion in addition to Table 1.
Danezis evaluated his technique using HTTP server logs
rather than generated traffic. Since these logs record in-
formation at HTTP request granularity, Danezis’ accuracy
rating describes success at identifying individual HTTP re-
quests as opposed to entire page loads. To appreciate this
distinction, suppose there are three pages that each have a
unique HTML file and share an image. Furthermore, sup-
pose that the browser cache contains all HTML files but not
the shared image. If the user loads any of the pages, the
only request will be for the uncached image. Even if the re-
quest is identified with 100% accuracy, there is still no way
to know which page was actually loaded.

Although Herrmann evaluated his technique with caching
disabled, he also describes a“preliminary”evaluation in which
he enabled caching. Aided by several assumptions increas-
ing traffic vulnerability, Herrmann achieved 92% accuracy.
Herrmann increased the browser cache size from the 50MB
Friefox default to 2GB, thereby preventing cache evictions.
Herrmann also loaded all pages in the same order during
both training and testing, further stabilizing the state of
the cache. Herrmann’s evaluation also considered only the
homepages of popular websites. These pages tend to be
content rich, generating more traffic and offering increased
resilience to caching and consequently increased vulnerabil-
ity to traffic analysis. Many homepages (e.g. news sites)
may also disable caching of many objects to ensure users
get timely content. In contrast to Herrmann, our evaluation



Figure 2: Difference in total number of data packets seen
while loading website homepages and internal pages within a
website. Notice that five ranges of packet sizes have been de-
termined such that they evenly partition the range of packet
counts for internal pages.

uses randomized browsing and varied cache sizes in order to
robustly simulate diverse cache states. Our evaluation also
uses pages from a single website, generating a smaller traffic
footprint than a comparison of homepages.

3. EVALUATION TECHNIQUE ANALYSIS
In this section we review the potential effects of the eval-
uation assumptions and techniques described in Section 2.
To facilitate our discussion, we categorize the assumptions
into two distinct groups. Explicit assumptions are those de-
signed to make traffic more vulnerable to attack, and influ-
ence factors such as the pages selected for analysis and the
configuration of the system generating traffic. Implicit as-
sumptions arise as artifacts of the evaluation infrastructure,
and include design aspects such as using the same software
stack, browser cookies, or IP address to generate all traffic.
We find that the broad scope of assumptions casts doubt on
the true effectiveness of previously proposed traffic analysis
techniques.

We begin our discussion with the explicit assumptions. Most
significantly, all evaluations we have surveyed that utilize
actual packet traces have assumed that the browser cache
has been either fully disabled, set so small (200 KB) as to
be effectively disabled [4], or set so large (2GB) as to be
relatively stable [8]. Coull et al. consider a reasonable cache
configuration, although their evaluation is restricted to a rel-
atively small set of the Alexa Top 50 website homepages [5].
Danezis’ use of HTTP server logs does reflect the effects of
caching, but his evaluation attempts to identify individual
HTTP requests rather than entire page loads and assumes
that individual object lengths are available [6]. The assump-
tion that the browser cache is disabled is only appropriate

for privacy systems which include an expertly configured
application level component. For example, the Firefox dis-
tribution in the Tor Browser Bundle disables caching by de-
fault, although even Tor guidelines allow users to enable the
memory cache [1]. There is no reason to believe that users
browsing the web over HTTPS will disable their browser
cache.

Figures 1a and 1b present the effects of caching on the traf-
fic fingerprint of a website. Data for each figure was gath-
ered by visiting 72 unique pages within the secure portion
of the website of a common US bank. The 72 pages were
spread over nine separate sections of the website. Although
the ordering of page visits within each of the nine sections
remained constant as this was often dictated by the link
structure of the website, the order in which the sections
themselves were visited was randomized. Note that some
pages were visited multiple times within each section as ne-
cessitated by link structure.

Each section was visited twice during each sample in order to
allow for potential effects of caching. The Firefox parameters
browser.cache.disk.capacity and browser.cache.memory
.capacity were used to set the size of the disk and memory
caches respectively. In order to gather data for caching dis-
abled, the cache size was set to 0. In order to gather data for
caching enabled, we varied the size of the cache to simulate
a range of cache states. Both the memory and disk caches
were set to 1MB, 8MB and 64MB for one sample each.

We gathered data using Firefox 13.0.1 running on Ubuntu
12.04 using a virtual machine provided by VirtualBox 4.1.18.
Since Firefox came with Flash installed, the only other browser
extensions we used were Greasemonkey version 0.9.20 and
Firebug version 1.9.2. Traffic was recorded for each page
by invoking and terminating TCPDUMP in synchronization
with the page loadings conducted by Firefox. This was ac-
complished by making requests to a local server which con-
trolled TCPDUMP appropriately.

The figures concentrate on packet count since packets are the
most basic unit that is commonly observable in encrypted
traffic and the unit that most traffic analysis attacks operate
on. Notice that the variation in traffic for each page is larger
in Figure 1b than in Figure 1a, in effect blurring the traffic
fingerprint. Also, notice that the total amount of traffic de-
creases with caching enabled, making the traffic fingerprint
smaller. This demonstrates that the effects of caching have
high potential to frustrate traffic analysis.

In addition to assumptions about browser cache settings,
assumptions about active content and plugins are likely to
have influenced results. Some authors have assumed that
active content such as JavaScript and Flash are disabled [4,
11, 12], while others have not specified either way [3, 7, 8,
9]. Some common uses of active contents include increasing
interaction with the user, loading advertising, and customiz-
ing the page to the user’s browser environment. These are
all likely to increase the traffic generated by the page and
complicate traffic analysis attacks.

Separate from assumptions about browser configuration, as-
sumptions about traffic parsing have also influenced evalua-



tion results. Several authors have also designed traffic anal-
ysis techniques that utilized object sizes as a feature [4, 6,
9, 12]. These authors have recovered individual object sizes
using either web server logs, unencrypted HTTP traffic or
browsers which don’t pipeline requests. Since individual ob-
ject sizes cannot be recovered from encrypted traffic issued
by a modern web browser, it is unclear if these techniques
would be effective in practice.

The selection of websites for evaluation has also biased re-
sults. Cheng intentionally chose a static site with a mix
of HTML and images [4], while others have compared the
homepages of different websites [3, 5, 7, 8, 9, 10, 11]. Given
the difficulty associated with identifying “typical” or “aver-
age”websites for the purposes of traffic analysis evaluations,
selecting sites from rankings of the most popular internet
websites does seem reasonable. That said, evaluations must
also include more than website homepages as interactions
with the homepage alone ostensibly constitute a minority of
user interactions with any given website.

In order to quantify the effects of comparing website home-
pages rather than many pages from within a single website,
we randomly selected 100 of the Alexa top 1,000 websites,
loaded the homepage of each site, and then browsed through
nine additional links on the site at random. The only restric-
tion applied to link selection was that the link could not lead
to either the root or index page (i.e. the homepage) of any
website. This restriction served to separate traffic generated
by website homepages from traffic generated by pages within
a site. Data was gathered using the Chickenfoot extension
to Firefox running on OS X with caching and active content
enabled.

Figure 2 summarizes the contrast between website home-
pages and pages deeper within websites. By partitioning
the total count of data packets transferred in the loading
of pages internal to a website into five equal size buckets,
we see that there is a clear skew towards homepages being
larger and more content rich. Although part of this effect is
due to caching, this shows that an evaluation which enables
the cache and visits only homepages of different websites is
still utilizing traffic which has unrealistically high volume,
thereby producing more content for traffic analysis and ma-
chine learning techniques.

Results have also been influenced by the scope of pages con-
sidered in the evaluation. Recall that evaluations may con-
sider either a closed or open scope. In a closed scope, the
evaluation is restricted to a fixed set of webpages known in
advance to the attacker. In an open scope, the attacker may
encounter arbitrary traffic while observing a connection and
is interested in identifing traffic only from a fixed set of web-
pages, treating the remaining traffic as background traffic.
Closed models are only realistic in settings where the at-
tacker is monitoring either traffic from a direct connection
between the endpoints (such as HTTPS) or traffic which has
already left any proxy system. In settings where the attacker
monitors an encrypted channel to a proxy (e.g. Tor or an
SSH connection), the attacker cannot rely on the user only
visiting webpages from a fixed set. Thorough evaluations in
open world settings must vary the size of the set of interest-
ing pages as evaluations have shown larger sets can increase

the false positive rate [11].

Explicit assumptions aside, implicit assumptions can arise as
consequences of the evaluation infrastructure. Although web
traffic is increasingly diverse due to user specific content and
differences in browser software and plugins, few evaluations
mention any measures taken in the experimental design to
account for these differences. Hintz trained and evaluated
his attack on separate machines, although he only analyzed
five pages [9]. Danezis trained and evaluated his attack using
server logs [6]. Absent any reflection of user diversity, using
the same OS, browser, plugins, IP address and cookies for
all training and evaluation will reduce traffic diversity.

Infrastructure has also influenced evaluations by automati-
cally isolating individual page loads, allowing the attacker
to avoid parsing actual traffic. This assumption results in
an unrealistically high true positive rate if an attacker is un-
able to actually isolate traffic in practice. Less obviously,
the base rate of actual positives, which may be influenced
both by the traffic itself and the parsing of the traffic, is
fundamentally unknown. This problem is particularly rel-
evant to transport layer proxies, such as Tor, where added
noise, high latencies and non-web traffic make parsing more
difficult. Without knowing the base rate we are unable to
determine the acceptable range for the false positive rate and
hence are unable to determine whether traffic analysis could
effectively be deployed against these systems in practice.

4. ROBUST EVALUATION OBJECTIVES
Having analyzed evaluation methodologies, we now articu-
late several objectives for more rigorous evaluation of traffic
analysis techniques. Given the wide variation of internet
traffic and the nearly infinite range of potential features for
use in traffic analysis, we do not believe that it is possible
to consistently simulate or recreate traffic which is always
“realistic.” That said, we view these objectives as a non-
exhaustive initial guideline and believe that they do result
in increasingly realistic evaluations. We also recognize that
meaningful evaluation is possible without satisfying all ob-
jectives, although each objective addresses important con-
cerns and improves evaluation quality. We enumerate the
objectives in bold with additional details below.

Software configurations should be in agreement with

the threat model. Unless the work is considering attacks
against a privacy technology which includes application level
components, such as a customized browser configuration, the
work should assume that all browser options are set to the
default setting and any common plugins are installed (e.g.
Flash).

The page scope should be in agreement with the

threat model. A closed scope is reasonable only when
the destination IP address of the traffic is known to the
attacker, the attacker is able to associate the IP address
with a website, and the attacker would reasonably be able
to crawl all individual pages served from that website. If the
destination IP is unknown, as is the case with transport layer
proxies, the evaluation should be open scope and assume the
attacker will encounter previously unseen traffic.

Pages analyzed and identification objectives must



be consistent with user behavior and priorities. The
pages used for evaluation must include both website home-
pages and internal pages, ideally mixed in a way which is
proportional to actual user browsing habits. This mixture
is key not only because pages within a website share more
content than those from different websites, yielding higher
caching effects, but also because internal pages produce less
traffic than website homepages. Separate from concerns
about the mixture of pages used in the evaluation, the eval-
uation must also consider likely objectives of the user. For
example, if the user is likely to want to conceal interaction
with an entire website, rather than just individual pages
within that website, then the analysis should consider the
identification of website visits over a series of page loads
rather than isolated page loads.

Software diversity and user specific content should

be reflected in the evaluation. Differences in HTML
and script engines between browsers may cause variations
in the number of connections, ordering of requests, or even
which objects are requested. Differences in the OS and plug-
ins, screen resolution and language settings may cause addi-
tional differences. Separately, user contributed content and
content targeted to the user by the website will also alter
the traffic fingerprint.

Evaluations should include high-interaction traffic

from Web 2.0 technologies. Websites including many UI
elements that generate traffic for user interaction complicate
the traffic fingerprint. For example, the traffic stream for a
website (or webapp) that utilizes extensive client-side script-
ing to extend the functionality at a single page, rather than
navigating to a different page, may contain more, smaller
events than typical web traffic.

Evaluations should address difficulty in isolating in-

dividual page loads. Traffic segments extracted from real-
world traffic may contain parts of multiple requests and/or
not contain all packets from any single request. This is espe-
cially true for proxy systems such as Tor which have higher
latency than direct connections. This difficulty in precisely
identifying and isolating traffic caused by individual page
loads may influence accuracy as extraneous traffic may de-
crease the true positive rate and the base rate will be affected
by how many “requests” are parsed from the original traffic
stream.

An evaluation using real-world HTTP traffic would satisfy
many objectives, although techniques must use only packet
meta-data and not features such as object length recovered
from packet contents. Unfortunately, this approach has the
problem of labeling page loads, as faced in Danezis’ evalua-
tion [6]. Alternatively, VMs with a range of software config-
urations could also generate diverse traffic. Making multiple
visits to a website in order to build user history and poten-
tially lead the site to customize content to the user could also
increase traffic diversity. We leave the further development
of these techniques as future work.

5. ATTACK TECHNIQUE
In this section, we present the design and mathematical
specification of our attack. Section 5.1 presents an overview
of the attack as well as the construction of traffic mod-

els from training data, Section 5.2 describes the details of
how the attack is conducted given a traffic model, and Sec-
tions 5.3 and 5.4 describe extensions to the attack which
offer performance improvements.

Throughout the section, we provide a running example with
the aid of Figures 3, 4, 5, and 6. The running example uses
hand-created feature sets and performance statistics and is
not drawn from any website, real or simulated. This example
is provided for demonstration purposes only to act as an aid
in presentation of the attack technique.

5.1 Overview and Model Generation
In this section we present an overview of our traffic analy-
sis technique. We begin by describing the features used in
analysis and then present the motivation and rationale for
selecting the underlying machine learning technique as well
as how the technique is employed to generate traffic models.
We have designed our attack to support the evaluation stan-
dards outlined in Section 4, including robust performance in
the presence of caching and dynamically generated content.

The feature set we use in our analysis is the (outgoing, in-
coming) byte counts of traffic bursts seen on each individual
TCP connection used while loading a page over HTTPS. For
example, denoting outgoing packets as positive and incom-
ing packets as negative, the packet sequence [+314, +660,
-100, -1500, -1230, +70, -350] yields the features (974, 2830)
and (70, 350). Once all features have been extracted from
each TCP connection, the features are aggregated into groups
based on the second level domain of the hostname associated
with the destination IP of the TCP connection. Thus, if
seven separate domains are contacted in the course of load-
ing a website, the corresponding feature set will consist of
seven sets of ordered pairs where each pair corresponds to an
(outgoing, incoming) burst of traffic. All IPs for which the
reverse DNS lookup fails to return a hostname are treated
as a single “unknown” domain.

Figure 3 presents six hand-fabricated feature sets from three
visits to two pages each. The feature sets from the same page
have been aggregated to the same plot as they would be to
form a set of training data. Notice that within each plot
the data tends to form two clusters, where each feature set
produces one data sample in each of the clusters. Intuitively,
this occurs because each data point corresponds to a series
of pipelined requests and corresponding responses, and these
requests and responses are necessarily repeated on successive
loadings of a page.

Notice that in Figure 3 features from Domain A are more
tightly clustered and consistent than features from Domain
B. This pattern is typical of websites which contain con-
tent from multiple domains. Consider a website foobar.com
which displays dynamically generated ads from google.com.
The core content for each page, served by foobar.com, is
likely to be relatively consistent across successive loadings
of a page, while the dynamically generated ads, served by
google.com, will tend to vary. By treating features from
different domains separately during the clustering process,
we remove extraneous data which may impede the clustering
process from recognizing sets of points caused by the same
request and response sequence. We also recognize that the
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Figure 3: Training data for two pages, where each set of training data contains three feature sets, indicated separately by
‘x’, ‘o’ and ‘+’. Each feature set represents a single visit to a page and includes two (outgoing, incoming) traffic pairs to two
domains each. Notice that traffic to Domain A tends to be more tightly clustered than traffic to Domain B, revealing greater
information about traffic contents.

size (covariance) of each cluster will tend to vary as a func-
tion of the domain. As will be show in Section 5.3, treating
data from different domains separately also allows for dif-
ferences in the predictive accuracy of each domain to be
considered in the attack process.

The (outgoing, incoming) size of traffic bursts offers two
properties particularly well suited to traffic analysis. By ag-
gregating the lengths of continuous packet sequences in a
given direction into a single statistic, fragmentation effects
are removed from the data. Fragmentation could occur ei-
ther as a natural result of transmission through the network,
or in the application layer as HTTP servers use chunked en-
coding to transfer responses to clients as content becomes
available. Additionally, analyzing pairs of outgoing and in-
coming traffic bursts allows the data to contain a minimal
amount of ordering information and go beyond techniques
which focus purely on packet size distributions.

Having established the feature set for our analysis, we now
turn to selection of an underlying machine learning tech-
nique. To identify similar feature sets while maintaining tol-
erance for minor variations, we selected an approach which
uses Gaussian Mixture Models (GMMs) to cluster features
rather than an approach which counts individual instances
of specific feature values. By using a clustering approach, we
are able to recognize that that the ordered pair (370,2200)
is more similar to (375,2300) than it is to (632,50000).

To appreciate the benefit of tolerating minor traffic varia-
tions, consider a page which has an image banner. Although
the banner may always be the same number of pixels on the
page, this does not mean that the resource requested will
always be the same size. Variations in the content of the im-
age can impact the effectiveness of compression techniques
used in image formats, resulting in changes in the total byte
count. Similarly, as user specific content inserted into por-
tions of a page can cause variations in traffic, the total byte
counts are likely to remain similar yet distinct across many
users.

To fit a GMM to training data, we elected to use a Bayesian

approach to clustering rather than the maximum likelihood
approach since the ability to introduce prior distributions
over the parameters of the GMM fixes some difficulties as-
sociated with maximum likelihood. Recall that in the max-
imum likelihood approach, a cluster may be assigned to a
single point, causing the cluster to collapse onto that point
as the covariance converges to 0 during the M step of the
Expectation-Maximization (EM) algorithm. The ability to
set prior distributions over cluster parameters prevents this
collapse from happening. Additionally, since there are many
factors which can cause small variations in the size of re-
sources requested on a page, the ability to specify that a
cluster should not fit the training data as tightly as possible
can be of great use.

Another advantage offered by the Bayesian framework con-
cerns inferring the number of Gaussian components (clus-
ters) in the GMM. As the number of GMM components in-
creases in the maximum likelihood approach, the likelihood
of training data given the model will continue to increase as
well. This is because the model is able to fit the data in-
creasingly closely. This creates a problem with over-fitting
the data since there is no clear way to determine the cor-
rect number of clusters. In contrast, a Bayesian approach
naturally introduces a trade-off between model complexity
and how well the model fits the data, thereby helping to
discourage over-fitting.

Although the Bayesian framework provides the advantage
of allowing prior distributions over parameter values, this
comes at the expense of adding the GMM parameters to
the model as latent variables. This additional complexity
prevents a straightforward application of EM as there is no
known way to directly calculate the posterior distribution
over all latent variables (including GMM parameters) during
the E step of the EM algorithm.

In place of EM, we employ variational inference in order to
fit the model to the data [2]. Variational inference requires
that the distribution over latent variables be specified as a
product of several factors, such that each factor can be op-
timized separately while the others are held constant. This



restriction makes successive iterations feasible, although at
the cost of accuracy since the posterior distribution has been
artificially constrained and can no longer be an arbitrary
function. Similar to EM, variational inference terminates
when the marginal improvement incurred by each iteration
to the likelihood of the observed data diminishes to less than
a preset convergence threshold. Consequently, lower values
of the convergence threshold produce models which fit the
training data more closely, although at the cost of additional
computation.

Although each invocation of the clustering algorithm is guar-
anteed to converge and terminate, the algorithm must be
invoked multiple times. Recall that this is necessary in part
to determine the number of components in the GMM, as
invocations with too many or too few clusters will tend to
produce lower likelihood of the training data. Multiple in-
vocations are also necessary since the clustering technique
involves an initial randomized assignment of points to clus-
ters and often converges to local rather than global optima.
Hence, successive invocations may produce improved results
depending on the initial randomized assignment. After in-
voking the clustering algorithm with a range of number of
clusters, the single invocation which produced the highest
likelihood of the training data is selected and returned as
the model.

Towards offsetting the cost of multiple invocations, we devel-
oped a heuristic which separates invocations of the clustering
algorithm into three separate rounds. The heuristic limits
computational cost in successive rounds by varying K, the
number of components used in each invocation. The first
round considers values of K ranging from 1 to a maximum
determined by the following equation:

Kmax =






N, if N ≤ 10

10 + N−10
2 , if 10 < N ≤ 30

20 + N−30
3 , if 30 < N ≤ 42

24, if N > 42

(1)

where N represents the maximum number of data points
contributed by any single feature set to the set of points
being clustered.

Once the first round of invocations has been completed, the
range of K values for the second round is determined using a
window of size 9 centered on the value of K which produced
the highest data likelihood during the first round. For the
third and final round, the invocation which produced the
highest data likelihood from the first two rounds is identified,
and a search is performed around a window of size 5 centered
on the best performing value of K. In Section 6 we present
an experimental justification of our heuristic design.

5.2 Basic Attack
Having described the type of feature used in analysis and the
machine learning technique used to produce a model for each
page, we now present a precise specification of the traffic
model as well as the approach used to classify traffic given a
set of models. We begin by extending our running example
to illustrate the classification of traffic by an attacker.

To obtain an intuitive understanding of classification con-
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Figure 4: Fabricated feature set corresponding to a single
visit to an unknown page.

sider Figures 3 and 4. Recall that Figure 3 presents several
(fabricated) feature sets, similar to what an attacker would
have available during training. Figure 4 presents a single
feature set as would be available to an attacker during an
attack. The attacker’s task is to identify whether the page
which caused the features observed in Figure 4 is Page 1
or Page 2, as seen in Figure 3. Visual inspection reveals
that the patterns observed in the feature set are most simi-
lar to those of Page 1, indicating that the unknown Page X
depicted in Figure 4 is most likely Page 1.

In effect, our visual inspection has created a model for each
page and each domain observed in Figure 3 and concluded
that the samples observed in Figure 4 are more likely to
have been generated by the models corresponding to Page
1 than the models corresponding to Page 2. This type of
comparison is formalized in our attack, as we use the series
of GMMs produced for each page to quantify the similarity
of a traffic sample to training data for each page.

The exact likelihood of a feature set given a model for a spe-
cific page is defined below. Let several variables be defined
as follows:

• Let X denote the entire set of features from a trace,
with Xd denoting all features observed at domain d
and Xd

i denoting ordered pair i seen at domain d.

• Let U denote the set of all pages for which there is a
traffic model.

• Let Θ = {Θu | u ∈ U} denote the attacker’s entire
model over all pages, where Θu denotes the model
specifically associated with Page u.

• Let Dom(X) denote the set of domains seen in a fea-
ture set, and Dom(Θu) denote the set of domains seen
in the training data for Page u.

• Let Θu = {(wd,Θ
u
d) | d ∈ Dom(Θu)}, where wd de-

notes the portion of training data for Page u seen at
Domain d and Θu

d denotes the GMM corresponding to
Domain d at Page u.

• Let Θu
d = (K,Σ, µ,π), where K denotes the number

of components in the GMM, and Σk, µk,πk denote the



covariance, mean and weight of component k in the
GMM.

Thus, the likelihood of feature set X given a model Θu for
a specific page is defined as follows

P (X|Θu) =
Dom(X)�

d

P �(Xd|Θu) (2)

P �(Xd|Θu) =

�
P ��(Xd|Θu

d) if d ∈ Dom(Θu)

P ���(Xd|Θu) if d /∈ Dom(Θu)
(3)

P ��(X|Θu
d) =

X�

x

K�

k=1

πkN (x|Σk, µk) (4)

P ���(X|Θu) =
Dom(Θu)�

d

wdP
��(X|Θu

d) (5)

Notice that Equation 4 simply denotes the likelihood of a set
of pointsX given a GMMΘu

d . Notice also that this approach
is particularly amenable to caching because the absence of
a particular feature will not directly cause a decrease in the
likelihood of a feature set occurring.

In the event that Dom(X) �⊂ Dom(Θu), there will be traffic
in X to domains for which there is no GMM in Θu. The
likelihood of traffic to domains not in Θu is calculated by
taking a weighted linear combination of the GMMs for each
domain in Θu, where weights are determined by the fraction
of training data contributed by the domain. This technique
is seen in Equation 5. We assume this approach since one
possible cause of Dom(X) containing domains not seen in
Θu is that content may be served via dynamic redirection,
leading to domains observed during testing which were not
observed during training.

Having calculated P (X|Θu) for each page u ∈ U , we predict
that feature set X was generated by Page û ∈ U as follows

û = argmax
u

P (X|Θu) (6)

Unfortunately, the nature of GMMs is such that for u �= û,
P (X|Θu) is often extremely small relative to P (X|Θû), in ef-
fect guaranteeing that feature set X would not be generated
by any of the models Θu. This is an undesirable consequence
of our modeling technique since in effect the model portrays
higher confidence that û is the page being visited by the
victim than is appropriate. In the next section we will ex-
plore ways to correct this bias, as well as ways to incorporate
information about the different predictive accuracy of each
domain.

5.3 Weighting Extension
In this section, we explore a technique for extending the at-
tack described in Section 5.2 to weight the impact which
each domain d has on traffic identification. Although we

begin our discussion from the perspective of weighting do-
mains, our technique will also be useful in assigning a likeli-
hood to each page u rather than simply identifying the single
page û which is most likely to have produced a feature set X.

Returning to our running example, recall that in Figure 3
traffic to Domain A is more consistent and tightly correlated
than traffic to Domain B. This is a common consequence of
Domain A serving core page content and Domain B serv-
ing dynamically generated content such as advertising. Fre-
quently, the consequence of this difference in repeatability
is that Domain A will more accurately predict traffic than
Domain B. We would like for our attack to automatically
recognize this difference and weight the impact of Domains
A and B appropriately.

Figure 5 extends our example and demonstrates our tech-
nique for weighting the impact of each domain. To elucidate
differences in accuracy, we consider eight separate pages,
rather than two, served by Domains A and B. We first mea-
sure the accuracy of each domain by rank ordering the like-
lihoods P �(Xd|Θu) over all u ∈ U , and then checking to see
at which position in the ordering the page u which actually
produced sample X occurred. This is performed repeatedly
over a set of samples X. Intuitively, this is akin to asking
each domain to make predictions about which page gener-
ated X, and recording how many predictions are necessary
in order to obtain the correct answer. As shown in Figure 5,
we then fit a curve to the measured accuracy of predictions
issued by each domain. Curve fitting helps to smooths over
variations in observed accuracy, ensures that likelihood of
each prediction will consistently decrease, and guarantees
that the likelihood of each prediction will be strictly posi-
tive. The unnormalized likelihood of a page u is now calcu-
lated by rank ordering a sample according to each domain
and multiplying the values on the fit curve which page u
receives at each domain.

This approach can be formalized as follows. Assuming N
samples are used in evaluating the accuracy of each domain,
let Nd

k denote the total number of times that model Θu

corresponding to the correct page u was assigned likelihood
of rank k. We define an accuracy function for domain d as
follows

Accuracyd(k) =
Nd

k

N
(7)

In general, we would expect the Accuracy function to be
strictly decreasing as the attack should tend towards iden-
tifying correct URLs. In order to smooth out variations in
the accuracy resulting from the data, we fit a curve of the
form

Fitd(k) =
α
kβ

≈ Accuracyd(k) (8)

where d denotes the domain corresponding to the curve and
α and β denote the parameters of the curve itself. Notice
that the value Fitd(k) predicts the likelihood that the page
predicted at rank k using data from domain d will be correct.
To combine data from different domains to produce a single
prediction, we define additional functions Scores and Rank
as follows

Scores(X, d) = sorted({P �(Xd|Θu) | u ∈ U}) (9)

Rank(X, d, u) = Scores(X, d).indexof(P �(Xd|Θu)) (10)



1 2 3 4 5 6 7 8

Domain A Accuracy
P(

u)

Index of P'(XA | !u) in ranking over all u " U

0.
00

0.
25

0.
50

A(r) #  P(u | r = rank(u))
P(u | rank(u))

(a)

1 2 3 4 5 6 7 8

Domain B Accuracy

P(
u)

Index of P'(XB | !u) in ranking over all u " U

0.
00

0.
25

0.
50

B(r) #  P(u | r = rank(u))
P(u | rank(u))

(b)

Page Domain A Domain B Potential
Page 1 A(3) = .10 B(2) = .18 .0180
Page 2 A(8) = .03 B(5) = .09 .0027
Page 3 A(1) = .50 B(3) = .13 .0650
Page 4 A(4) = .07 B(6) = .08 .0056
Page 5 A(7) = .03 B(8) = .06 .0018
Page 6 A(2) = .19 B(1) = .31 .0589
Page 7 A(5) = .05 B(7) = .07 .0035
Page 8 A(6) = .04 B(4) = .10 .0040

(c)

Figure 5: Demonstration of domain weighting approach. Figures 5a and 5b depict the measured accuracy of Domains A and
B respectively, where each domain d predicts the page u which generated a feature set X by ordering P �(Xd|Θu) over all
u ∈ U . Having determined accuracy of each domain, Figure 5c demonstrates how predictions are combined for a feature set
containing multiple domains. For a hypothetical feature set, Domains A and B have rank ordered page likelihoods as [3, 6, 1,
4, 7, 8, 5, 2] and [6, 1, 3, 8, 2, 4, 7, 5], indicating that Domains A and B predict that pages 3 and 6 are respectively most likely
to have produced the feature set. Notice that Page 3 ultimately retains the highest ranking as Domain A is more accurate
than Domain B. Note that Potential is the unscaled likelihood.
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Sample 1 Sample 2 Sample 3
Actual Page 1 Page 3 Page 4
Page 1 .0100 .0010 .0001
Page 2 .1000 .0100 .0010
Page 3 .0010 .1000 .0100
Page 4 .0001 .0001 .1000
Prediction Page 2 Page 3 Page 4

(b)

Independent HMM
Path Likelihood Likelihood

2 - 3 - 4 .0010 .0000
2 - 3 - 3 .0001 .0000
2 - 2 - 4 .0001 .0000
1 - 3 - 4 .0001 .0001

(c)

Figure 6: Performance improvement from Hidden Markov Model. Figure 6a depicts the link structure of a website with four
pages. Figure 6b depicts the likelihood assigned to features extracted from three samples taken from the website, the actual
page which generated the samples, and the prediction which results from considering the pages in isolation. Figure 6c presents
the likelihoods of the correct browsing path of the three samples as well as all other paths which are equally or more likely
when considering the samples both independently and using a HMM. Notice that the HMM correctly identifies all samples.

where the function sorted transforms an unordered set into
a vector sorted in descending order and indexof returns the
index of an element in a vector.

This allows us to produce predictions which leverage the fact
that some domains are more accurate than others. Together,
Fit and Rank allow us to predict the page u associated with
a feature set X as follows

Ψ(u|X,Fit, Rank) =
Dom(X)�

d

Fitd(Rank(X, d, u)) (11)

Notice that we specify a potential function Ψ rather than a
probability distribution P . This approach does not specify a
valid probability distribution over u since Ψ is unnormalized.
Under the domain weighted model, the predicted page û is
specified as follows

û = argmax
u

Ψ(u|X,Fit, Rank) (12)

In order to use this approach to obtain a likelihood for each
page u rather than simply the most likely page û, a curve is
fit to the accuracy of predictions made by all domains in the
same way that a curve is fit to the accuracy of predictions
made by a single domain. This extension is useful in the
coming section, which will extend the domain weighting ap-
proach using a technique similar to a Hidden Markov Model

in order to leverage the link structure of a page.

5.4 Sequential Data Extension
In this section, we discuss a final extension to our technique
which utilizes the link structure of the page. Up to this
point, we have considered all feature sets to be independent.
In practice, we know that this assumption is false as the link
structure of the website will restrict the sequence of pages
which ultimately generate traffic.

We remove this assumption using an approach similar to a
Hidden Markov Model (HMM). Recall that a HMM for a
sequence of length N is defined by a set of latent variables
Z = {zn | 1 ≤ n ≤ N}, a set of observed variables X =
{xn | 1 ≤ n ≤ N}, transition matrix A such that Ai,j =
P (Zn+1 = j|Zn = i), an initial distribution π such that πj =
P (Z0 = j) and an emission function E(xn, zn) = P (xn|zn).

Figure 6 concludes our running example by presenting a case
in which the use of a HMM increases the accuracy of traf-
fic identification by ruling out identifications which are not
possible given the link structure of the website.

Applied to our context, the HMM is configured as follows:



-2 -1 0 1 2
36 34 413 53 40

Table 2: Tally of difference values between the number of
components in the best fit model and center of the search
window in round 3.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
3 5 20 23 56 70 130 68 60 62 55 16 8

Table 3: Tally of difference values between the number of
components in the best fit model and center of the search
window in round 2.

• The latent variables zn correspond to pages u modeled
by the attacker

• The observed variables xn correspond to observed fea-
ture vectors X

• The initial distribution π assigns an equal likelihood
to all pages

• Letting links(i) denote the set of pages linked to from
page i, the transition matrix A is defined as Ai,j = 1
if j ∈ links(i) and 0 otherwise

• The emission function E(xn, zn) = Ψ(zn|xn, F it, Rank)

Note that neither the emission function E nor the transition
matrix A represent valid probability distributions, as would
be required by a directed graphical model. Instead, we treat
the HMM as an undirected graphical model parameterized
by potential functions. This alteration has no effect in prac-
tice as the max-sum algorithm is equally applicable to both
directed and undirected graphical models.

To further increase accuracy, the emission function E can
be replaced with the fit likelihood function described in the
conclusion of Section 5.3. We refer to this as the Scaled
HMM in our evaluation as the likelihood of each page u has
been scaled according to the accuracy of the model.

6. EVALUATION
In this section we present our evaluation results. The eval-
uation was conducted in two phases, first on a smaller set
of pages and subsequently on a larger set of pages. Since
there is considerable computational cost associated with our
attack, evaluation on a smaller set of pages allowed us to
hone aspects of the attack such as convergence threshold
and number of invocations of the training algorithm before
operating on larger datasets. Accuracy on the larger set of
pages ranged from 64% - 99% when examining portions of
several common websites containing between 176 and 366
unique pages. For comparison, we were able to achieve 95%
accuracy when identifying traffic corresponding to 402 web-
site homepages while ignoring all information about packet
destination.

We gathered traffic traces using a system similar to that de-
scribed in Section 3 for gathering data about the effects of
caching. We analyzed data using the clustering algorithm

Training Number of Convergence Model
Time Iterations Threshold Accuracy (%)
1:23:19 1-4-4 50.0 59.1
2:45:52 1-4-4 5.0 61.1
4:50:11 1-4-4 0.5 61.2
2:53:05 2-8-8 50.0 58.5
5:12:06 2-8-8 5.0 62.5
8:43:58 2-8-8 0.5 63.3

Table 4: Impact of changes to number of iterations and con-
vergence threshold on model accuracy and training time.
Note that X-Y-Z denotes X, Y and Z iterations used in
rounds 1, 2 and 3 respectively.

described in Section 5 implemented in R, along with the mul-
ticore package to enhance performance. Unless otherwise
stated, evaluation was performed on c1.xlarge instances on
Amazon EC2. Each instance offers 8 virtual cores for a total
of 20 EC2 compute units and 7GB of memory. Note that
one EC2 compute unit is approximately equivalent to the
performance of a 2007 Xeon processor.

6.1 Small Scale Results
We conducted our small scale evaluation on a common finan-
cial website. The set of pages used included 72 distinct pages
spread over nine separate sections within the bank’s website,
with some pages generated in response to form submissions
or validation checks As with the gathering of caching data,
the order of pages within each section remained constant
and the order of sections themselves was randomized. For
our small scale evaluation, we collected 48 sample traces
over the course of 36 hours, with the cache sizes set to 0MB,
1MB, 8MB, and 64MB for 12 samples each. Recall that
both the memory and disk caches are set to the specified
cache size, yielding a total possible cache size twice as large,
although the effective cache size is likely somewhere in the
middle as Firefox may use the two types of cache differently.
The cache was cleared and the browser restarted after each
sample was gathered in order to restore a consistent state at
the beginning of each trace.

Our small scale evaluation was designed to allow us to ex-
periment with a wide range of factors, such as the browser
cache settings, clustering convergence threshold, number of
invocations of the clustering algorithm and the amount of
training data used. By experimenting with these factors on
a smaller scale, we are able to explore a wider range of fac-
tors and settings in order to decide which aspects to consider
in our full scale evaluation. Since these factors relate only
to the clustering technique and browser configuration, we
do not include the HMM extension to the attack technique.
Furthermore, we further simplify the evaluation by treating
all data as being from a single domain.

We begin with an experimental justification of our cluster-
ing iteration heuristic. Tables 2 and 3 present the differ-
ence between the number of clusters at the center of the
search window and the number of clusters which ultimately
resulted in a model with the highest lower bound on data
likelihood. Each table includes the results of 576 distinct
model fittings, where each single fitting includes all invoca-



Training Num. of Training Traces Avg. Accuracy per Page (%) Avg. Accuracy per Trace (%)
Time (Avg.) 0MB 1MB 8MB 64MB 0MB 1MB 8MB 64MB 0MB 1MB 8MB 64MB

5:02:04 4 0 0 0 55.4 57.5 53.3 54.0 59.7 61.2 58.2 58.7
3:07:02 0 4 0 0 25.2 76.6 71.5 71.7 31.1 77.5 73.3 74.0
1:52:15 0 0 4 0 21.4 65.0 72.2 73.5 23.4 61.5 74.7 76.2
1:31:16 0 0 0 4 20.5 62.8 71.2 75.3 21.9 58.6 73.7 78.4
2:42:11 1 1 1 1 38.5 63.6 59.4 60.6 43.3 65.8 62.8 64.2

Table 5: Accuracy for varied cache sizes. Each row presents the average performance of three models. Samples for models
in the first four rows were allocated on a rotating basis so that each model includes samples spanning the entire collection
period. Samples for the final row were selected at random. Models were evaluated using all 44 remaining traces not used in
training. Accuracy per Page denotes the average of the accuracy rates for each page. Accuracy per Trace denotes the average
accuracy over all requests in a trace. Note that due to link structure some pages occur more than others in each trace.

tions of the clustering algorithm over each of the 3 rounds
to produce a single best-fit model. Although it is provably
impossible for the experimentally optimal value of K (the
number of Gaussian components) to be outside of the win-
dow of size 5 used during round 3, or more than 2 outside
of the window used on round 2, the concentration towards
the center of each range provides support for our window
size choices. Note that there is a slight bias towards larger
numbers of clusters. This is due to websites which produced
a large amount of traffic, resulting in a true optimum which
was greater than the maximum number of clusters consid-
ered.

Although our heuristic does guide the value of K used for
clustering invocations during each round of our search, the
heuristic does not determine the correct number of iterations
to perform in each round or the convergence threshold which
should be used to terminate each invocation. Small conver-
gence thresholds and larger numbers of iterations should al-
ways produce better results, although at the cost of greater
computation.

In order to assess the effects of adjusting these parameters,
we trained and evaluated models using three different con-
vergence thresholds and two different sets of iteration counts
for each round. The training data included one sample se-
lected at random from each cache size and remained constant
for all six combinations of convergence threshold and num-
ber of iterations. The resulting model was evaluated using
all remaining samples. Table 4 shows the impact of varying
numbers of iterations and convergence threshold on model
accuracy as well as training time.

Having assessed the effects of convergence threshold and
number of iterations on accuracy, we now examine the per-
formance of our traffic analysis attack under a range of cache
conditions. Table 5 presents the performance of models
trained from samples with homogenous cache size as well
as models trained from one sample of each cache size. All
models were trained using 1 iteration in the first round and
4 iterations in the second and third rounds of training, with
a convergence threshold of 5. Results are presented sepa-
rately for each cache size in order to distinguish performance
against various cache states.

Notice that each model performs the best against samples
from the same cache size, and progressively worse against

samples with progressively smaller cache sizes. This trend
reveals insight into why our clustering based approach per-
forms well in the presence of caching. Notice that the like-
lihood of a sample given a GMM based only on the likeli-
hood of each individual point in the sample occurring. This
presents a contrast with techniques that set a fixed number
of times that each value of a feature is expected to occur.
By allowing the likelihood of the sample to be determined
only by the points which actually occur in the sample and
assessing no direct penalty for points which are absent from
the sample, the model is able to easily accommodate the ab-
sence of specific features in traffic as a result of cache hits.

Correspondingly, the likelihood of a sample is significantly
decreased when a data point occurs which is sufficiently dis-
tant from the mean of each component of the GMM. This
property accounts for the worsening performance in trials
where the cache size for test data is smaller than the cache
size of the samples used to train the model. Since items
are likely to be cached during training but not cached dur-
ing evaluation, the evaluation data inevitably contains data
points which are far from any cluster mean that was fit to
the training data. The data point appears unlikely for the
page, and the likelihood is correspondingly decreased.

Additionally, notice that the traffic analysis technique actu-
ally performs worse with the cache disabled than with the
cache enabled. This is counterintuitive since disabling the
cache has the effect of increasing both traffic volume and
regularity, both of which would be expected to increase at-
tack accuracy. Our approach fails to capture this advantage
due partly to disadvantages of clustering and partly to com-
putational limitations. Since disabling the cache results in
a greater number of data points in each sample, it is harder
to develop models which fit the data closely. Models de-
veloped for cache size 0MB have on average 15.1 clusters,
where as models developed for 1MB, 8MB and 64MB caches
have 11.9, 11.5, and 10.3 clusters respectively. This suggests
that computational limitations may restrict the number of
clusters more often for models with cache size of 0MB. In
addition to potential limitations in the number of clusters,
higher convergence thresholds may cause clusters which do
not fit data as tightly. This can result in models which assign
moderate likelihood to a relatively broad range of samples,
often resulting in false positives.

Having assessed the effects of number of iterations, conver-



Training Number of Cache Cache
Time Samples Disabled Enabled
2:44:57 3 23.3 69.9
6:57:55 6 27.0 80.1
7:56:07 9 30.3 81.5
12:05:56 12 29.0 87.4

Table 6: Attack accuracy for varying amounts of training
data. Each row presents the average performance of two
models. Samples from the 1MB, 8MB and 64MB cache sizes
contributed evenly to to both the training and evaluation
data in all rows. Note that the 9 and 12 sample models
were trained using m2.4xlarge instances on EC2.

k=1 k=2 k=3 k=4 k=5 k=6
model 0 87.2 92.2 93.8 94.7 95.2 95.7
model 1 87.6 92.6 94.7 95.6 95.9 96.1

Table 7: k-Accuracy allows the traffic analyzer to specify a
set of k potential pages for each sample. We present both of
the 12 sample models generated from four samples of each
cache size.

gence threshold and cache state on accuracy, we now at-
tempt to determine the impact of amount of training data
as well as the maximum accuracy achievable with this at-
tack. Table 6 shows the accuracy for models trained using
samples from each cache size. All models were trained using
2 iterations in the first round and 8 iterations in the second
and third rounds each, with a convergence threshold of 5.
Since our traffic analysis technique focuses on HTTPS, a set-
ting in which the cache is unlikely to be disabled, we present
the evaluation results with the cache enabled and disabled
separately. Given the large amount of third party content
on the web such as Javascript libraries and advertising, the
user’s cache is unlikely to be entirely empty even the first
time that the user visits a site. Notice that increases in the
amount of training data provide the greatest accuracy im-
provements with the least additional computation relative to
both decreases in the convergence threshold and increases in
the number of clustering algorithm invocations.

Table 7 presents the k-Accuracy of each of the models trained
from 12 samples shown in Table 6. Notice that when the
traffic analyzer is allowed a second guess at the contents of
the encrypted traffic, accuracy increases from 87% to above
92%. Since pages judged to be similar by the traffic analyzer
tend to contain similar content, these “close” results can still
be of use to an attacker. In our evaluation, the bank website
advertised multiple credit cards, often on web pages which
had very similar layouts. Although the exact page was oc-
casionally mistaken, the attacker is still correct in believing
that the user is viewing information related to credit cards.

6.2 Full Scale Results
We now present the results of a full scale evaluation using a
larger set of pages. Having observed the effects of variations
in the number of iterations, we perform the full scale eval-
uation using 1-4-4 for the number of iterations (indicating
1 iteration in the first round, and 4 iterations in the second

and third rounds of model fitting). Additionally, we use a
convergence threshold of 5.0 and 8 traces as training data.
Since whether the cache was enabled or disabled appeared
to have larger effect than the specific cache size, we leave
the cache enabled to the default size during evaluation.

Our final evaluation uses three common websites, with one
having a medical focus, one having a legal focus, and one
having a financial focus. All websites included dynamically
generated content, such as either user-specific forms or ad-
vertising. Since the HMM extension to our attack considers
the link structure of the website, each site we selected was
chosen to have a different link structure. We describe these
structures and the websites in more detail below.

In preparing the bot for the medical website, we selected the
pages describing 26 different diseases on the site for inclu-
sion in our analysis, which each disease including on average
14 pages dedicated to the disease. We assume that the user
visits a single disease within the site, and visits all pages
associated with that disease twice during the browsing ses-
sion. Furthermore, we assume that the link structure of the
site allows the user to move arbitrarily between all pages
associated with a disease, even though the actual link struc-
ture does not permit this behavior. This allows the medical
website to represent a link graph which is composed of a
series of cliques which are fully separated from each other.
This property is particularly challenging to our attack since
a HMM will only be useful for discerning which clique the
traffic is within but can not help to distinguish pages within
the same clique, given the uniform transition probability.
This discrepancy is reflected in the fact that the attack iden-
tified the correct disease 99.5% of the time while identifying
the correct page only 70% of the time.

For the legal website, we created a bot which was capable
of creating a series of legal forms. The bot was given a
dictionary of common names, addresses, etc. in order to
complete short text fields. The bot also filled long text
fields by randomly selecting a message length between 50
and 300 words using a uniform distribution and filling the
message with words randomly selected from a dictionary of
the 1000 most common English words. Lastly, the bot set
checkboxes and radio buttons at random. Since the legal
website was composed of a series of forms, this resulted in a
link graph structure which more closely resembled a series
of arcs, where each arc began at the homepage, ended at
the payment page, and corresponding to filling out a sepa-
rate legal form. Although some arcs did contain branches
created by conditional completion of portions of the form,
the overall structure allowed much less variation in browsing
than the medical website.

The financial website was designed to more closely model
average website structure, with a connected link graph al-
lowing the user to navigate between any two pages in the
graph. By constructing a link graph with smaller cliques,
the benefit of the HMM is amplified since the total number
of pages which could come between any known pair of pages
is smaller. Note that the financial website presented consid-
erable difficulty in analysis since common use of redirections,
multiple URLs aliasing the same webpage, and dynamically
differing content (as seen in A/B testing) created consid-



Domain Number
Website Weighting of Pages k=1 k=5 k=10
legal weighted 176 68.0 90.8 94.3
legal unweighted 176 72.6 85.9 89.5
medical weighted 366 57.1 84.8 90.3
medical unweighted 366 55.9 72.8 76.7
financial weighted 291 46.9 65.7 74.1
financial unweighted 291 46.3 59.9 65.1

Table 8: k-Accuracy allows the traffic analyzer to specify a
set of k potential pages for each sample. This table presents
the k-Accuracy of the model predictions without support
from a HMM.

Domain HMM HMM
Website Weighting (unscaled) (scaled)
legal weighted 97.7 98.5
legal unweighted 85.3 95.6
medical weighted 70.0 70.0
medical unweighted 65.3 65.3
financial weighted 65.3 64.4
financial unweighted 43.7 53.5

Table 9: Final results on each webpage using both weighted
and unweighted models.

erable difficulty in labeling traffic samples. This behavior
presented a significant obstacle to analysis by both causing
the same page to have multiple labels and potentially for
the same label to be associated with multiple pages. Both
of these effects could be eliminated with additional work on
the part of the attacker and would only improve results.

Table 8 presents the k-Accuracy seen at each site in the
full scale evaluation. Notice that although the benefit from
weighting domains is minimal for k=1, the benefit increases
with the value of k. This is particularly helpful when used in
combination with a HMM, as the HMM will use the context
of surrounding requests to narrow the scope of likely pages.

Table 9 presents the accuracy of the full attack technique,
including the use of a HMM. Notice that the performance
gain using the HMM is much greater for the legal website, as
the link structure of this website increases the significance
of the sequential nature of the data.

As a means of comparing our approach with others stated
in the literature, we also describe the accuracy of our attack
when evaluated using website homepages. We selected the
top 500 domains as measured by Alexa and removed du-
plicates (such as the Google homepage in many languages)
to arrive at 402 unique homepages. In order to remove the
benefit of being able to observe the destination of traffic,
we performed our analysis treating all traffic as belonging
to a single domain. We also considered all traces in iso-
lation, making no use of a HMM in the analysis. Even
with these stipulations, we were still able to achieve 95%
accuracy, demonstrating both that our technique performs
strongly when compared with existing approaches and that
traffic analysis of pages within a single website is consider-

ably harder than traffic analysis of different homepages.

7. CONCLUSION
In this thesis, we review evaluations in related work relating
to traffic analysis, discuss and propose improved evaluation
methodologies, and present and evaluate a traffic analysis at-
tack designed to perform well under realistic settings when
comparing pages within the same website. By leveraging
differences in the destination of traffic as well as the sequen-
tial nature of browsing caused by link structure, we are able
to achieve accuracy ranging from 64% - 99% over subsets of
common websites. By comparison, we are able to achieve
95% accuracy when evaluating our approach using website
homepages, further affirming the potential for our technique
and highlighting the difference in difficulty when comparing
website homepages and pages within a single website.
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