
Better Malware Ground Truth:
Techniques for Weighting Anti-Virus Vendor Labels

Alex Kantchelian
UC Berkeley

Michael Carl Tschantz
International Computer

Science Institute

Sadia Afroz
UC Berkeley

Brad Miller
UC Berkeley

Vaishaal Shankar
UC Berkeley

Rekha Bachwani
Netflix∗

Anthony D. Joseph
UC Berkeley

J. D. Tygar
UC Berkeley

ABSTRACT
We examine the problem of aggregating the results of mul-
tiple anti-virus (AV) vendors’ detectors into a single author-
itative ground-truth label for every binary. To do so, we
adapt a well-known generative Bayesian model that postu-
lates the existence of a hidden ground truth upon which
the AV labels depend. We use training based on Expec-
tation Maximization for this fully unsupervised technique.
We evaluate our method using 279,327 distinct binaries from
VirusTotal, each of which appeared for the first time be-
tween January 2012 and June 2014.

Our evaluation shows that our statistical model is consis-
tently more accurate at predicting the future-derived ground
truth than all unweighted rules of the form “k out of n” AV
detections. In addition, we evaluate the scenario where par-
tial ground truth is available for model building. We train
a logistic regression predictor on the partial label informa-
tion. Our results show that as few as a 100 randomly se-
lected training instances with ground truth are enough to
achieve 80% true positive rate for 0.1% false positive rate.
In comparison, the best unweighted threshold rule provides
only 60% true positive rate at the same false positive rate.

1. INTRODUCTION
Machine learning provides scalable mechanisms for detect-
ing malware. However, the success of a machine learning
based system relies on availability of accurate labels for the
training data: prior work has shown that the detection ac-
curacy of a learning system can decrease significantly if the

∗This author was at Intel Labs while doing most of her work
on this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
AISec’15, October 16 2015, Denver, CO, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3826-4/15/10$15.00.
http://dx.doi.org/10.1145/2808769.2808780

training data is faulty [2, 5, 19, 28, 34] or adversarially cor-
rupted [4]. Unfortunately, in the real world, executable sam-
ples often come without trustworthy labels due to the time
and expense of manual labeling. In particular, because of
the rapidly changing nature of malware, large datasets of
executables cannot both have high-confidence manually ver-
ified labels and be up-to-date. For example, McAfee received
approximately 344,000 unique malware instances per day in
the second quarter of 2014 [25].

A common route for obtaining the ground truth about ma-
liciousness for samples is to rely on anti-virus (AV) engines.
For instance, the online service VirusTotal [62] accepts any
file submission, runs a set of engines provided by anti-virus
vendors, and reports on all of the AV decisions. In this pa-
per, we examine the problem of inferring the ground-truth
label of an executable instance from the multiple and often
conflicting individual AV vendor decisions. In particular,
we study and evaluate techniques for assigning individual
weights to vendors. In this model, the estimated ground
truth is malware if and only if the weighted sum of vendors’
(binary) decisions is larger than a specified threshold.

Most prior works assign equal weights to vendor labels, a
strategy that we call using an unweighted threshold. How-
ever, vendors vary in accuracy. Therefore, we propose an un-
supervised and a supervised technique for assigning weights
to vendors that reflect the vendors’ accuracies.

In the unsupervised technique, we take a generative Bayesian
model that has proven successful in crowd sourcing (e.g., [10,
40]) and apply it to malware labeling for the first time.
The model assumes that each vendor’s accuracy is unvary-
ing across various types of executables and that each vendor
operates independently of the others. (More formally, it as-
sumes (1) the independence of vendors and instances and
(2) independence between vendors given the hidden ground-
truth status of the executables.) Despite AV vendors actu-
ally having varying detection performance on sub-categories
of malware and communicating results with each other, we
find that these assumptions simplify the learning and in-
ference aspects of the model and produce acceptable accu-



racy. To adapt the model for malware detection, we encode
our problem specific knowledge that vendors favor low false-
positive rates and tend to exhibit large false-negative rates
by equipping the model parameters with asymmetric Beta
priors. These priors act as regularizers for the error rates of
the vendors, enforcing both low false positive and high false
negate rates. The model can subsequently be trained us-
ing Expectation Maximization without requiring any ground
truth [10].

In the supervised technique, we allow the learner limited
access to ground truth by revealing the ground-truth labels
of a small number of instances. We subsequently train a
logistic regression model on this labeled data to find a suit-
able weighting scheme. Both techniques are presented in
section 3.

To evaluate the learned models, we use a trustworthy test-
ing dataset based on VirusTotal historical AV scan reports
between January 2012 and June 2014, which we construct
from a larger dataset [27]. We carefully evaluate our learn-
ing approaches so as to respect the temporal ordering of ex-
ecutables. Our dataset is based on the first-seen AV scans of
280,000 executables. To create the evaluation ground truth
for these instances, we retrieve or otherwise trigger re-scans
with updated AV scanners. Our rational is to give enough
time to the AV vendors to catch up on their previous false
negatives and to a lesser extent false positives. In essence,
using historical data enables us to perform time traveling in
the future and see what the community consensus will later
be like for a completely novel instance. We temporally split
this dataset into a training and testing part such that all
first-seen dates of the training instances predate the first-
seen dates of the testing instances. This ensures temporal
consistency, a more realistic and stringent type of evaluation
than purely random cross-validation. We carefully explore
the dataset to justify our approach to ground-truth labeling
in section 4.

Our evaluation shows that both of our label aggregation al-
gorithms outperform the unweighted threshold aggregator.
The unsupervised aggregator typically outperformed the un-
weighted threshold approach by 4 percent points in true
positive rate for the same false positive rates obtained by
varying the number of detections required in the unweighted
threshold method. This improvement shows that simply ac-
knowledging the possibilities of differences in vendor quality
is sufficient to improve the labels. The supervised aggrega-
tor further improved the true positive rate by 20 percentage
points around the 0.1% false positive region, an achievement
possible with only a hundred labeled instances. This further
improvement shows the value of having a small number of
high-confidence labels to rate and prioritize vendors. We
present more detailed evaluation results in section 5.

Contributions. We make the following contributions:

1. We study the practice of ground-truth labeling for mal-
ware detection using machine learning.

2. Using a large dataset, we measure the change of AV
vendor labels over time, and estimate the time required
for labels to stabilize.

3. We evaluate two machine learning algorithms for re-
solving noisy labels in the malware domain.

While learning from noisy labels is a well-studied problem
in machine learning, to the best of our knowledge, we are
the first to show that unsupervised and supervised models
can improve the ground-truth labels for malware detection.

2. RELATED WORK

Ground-truth Approaches for Virus Detection. There is
a large body of research on malware detection. Table 1
summarizes a variety of studies on malware detection and
their approaches for constructing ground truth. Prior work
used four approaches of assigning ground-truth labels for
their datasets, each with downsides: 1) label data manually,
2) use labels from a single source, 3) use labels from a single
anti-virus vendor and 4) use labels from multiple anti-virus
vendor.

First, some manually analyzed their datasets to create their
own high confidence labels, an approach that does not scale
to large datasets.

Second, the majority of the prior work collected ground-
truth labels from well-known malicious and benign file col-
lections, for example, Anubis, VX Heavens, Wildlist Collec-
tions and Malfease dataset [1,7,13,15,20,22–24,26,41,43,45–
47, 49, 50, 57, 59–61]. For benign files, popular data sources
are SourceForge and the system files from Windows oper-
ating systems. This approach has at least three downsides
when using the data for evaluation purposes. Firstly, the di-
versity of the obtained samples can be very low, a problem
especially true for benign samples from the Windows OS.
Malware repositories also tend to be small or medium in
size, as every malicious label is manually verified. Secondly,
and for the same manual verification reasons, the malicious
executables are often old. This has the unfortunate effect of
evaluating 2014 work on pre-2006 VX Heaven malware sam-
ples [31]. Thirdly, the list curators are likely to include only
the most clear cut cases (such as Window OS files). Thus,
relying upon such lists could inflate a classifier’s accuracy
by avoiding difficult cases.

Third, the second most popular approach for collecting ground-
truth labels is consulting a single anti-virus vendor. Prior
work collected labels from Kaspersky [32], KingSoft [65,66],
Norton [54], McAfee [14,51] and Microsoft [8]. Using labels
from a single vendor can bias the dataset towards detec-
tion pattern of that vendor. Furthermore, prior research [2,
5, 19, 21, 28, 34, 53] showed and we also observe in our own
data (fig. 3) that vendors tend to disagree on the labels. To
avoid biasing our labels to a single vendor, we collect labels
from multiple vendors (≈ 80) participating on VirusTotal,
and analyze various approaches to derive a single aggregate
label from many vendors.

Fourth, to overcome the problem of single source bias, some
studies used the labels from more than one anti-virus vendor
to decide instance labels. In particular, they use a threshold
for the number of positive signals to decide whether a binary
is malicious. Perdisci et al. [35] use the decision of three



particular anti-virus vendors (ClamAV, F-Prot, and AVG).
Laskov et al. [16] consider a file as malicious if at least 5 AV
from VirusTotal detect it as malicious but consider a file as
benign if all the AV vendors label it as benign.

Typically, AV vendors tend to be conservative in declaring
a binary malicious, preferring false negatives over false pos-
itives. However, these approaches differ in how they label
binaries as benign. Some simply label all binaries not meet-
ing the threshold for maliciousness as benign, while others
use a threshold for benign labels too.

While this second approach can result in higher quality la-
bels, it effectively removes the most difficult to classify bina-
ries from the dataset, which could overestimate the accuracy
of algorithms evaluated with it [17]. A limitation of both ap-
proaches is that it treats all anti-virus vendors the same de-
spite each having their own false-positive and false-negative
rates.

Inconsistencies in AV labels. AV vendors specialize in dif-
ferent types of malware, and thus differ in the types of mal-
ware that they most accurately detect. Different vendors
use different techniques to detect and analyze malware, and
to determine the malware family of different malware in-
stances. These different methods sometimes give different
results. As a result, there are widespread inconsistencies
among the labels from different AV vendors.

Several prior studies have pointed out inconsistencies in la-
bels across AV vendors [2, 5, 19, 21, 28, 34, 53]. Mohaisen et
al. [28] systematically study the inconsistencies among the
labels of malware vendors and the impact of these inconsis-
tencies on the overall detection rates using 12K malicious
instances. They show that the detection rate of AV ven-
dors varies based on family of the malware being detected,
and that an AV engine is consistent (on an average) with
other AV engines only about 50% of the time. Bailey et al.
performed a similar study on the labels of 5 AV vendors:
McAfee, F-Prot, ClamAV, Trend and Symantec [2]. They
discovered that 25% of the new malware and around 1% of
one year old malware were undetected by some of these five
AV vendors.

Our work also finds inconsistency in labeling across AV ven-
dors, but our contributions are significantly different than
prior work. We focus on malware detection that is dis-
tinguishing malware from benign files, instead of malware
clustering which focuses on distinguishing different malware
families. We propose a systematic approach to aggregate
labels from myriad AV vendors to better predict the future
labels for the training set.

Solution for inconsistent labels. Deriving a single accu-
rate label from multiple noisy labels is a common problem
when working with real world data. The quality of the label
can have significant impact on classification accuracy [53].
The Expectation Maximization (EM) algorithm in conjunc-
tion with a generative Bayesian model has been used to esti-
mate the error-rates of the labelers in various crowd-sourced
labeling tasks with noisy labels, for example, text classifi-

cation [29, 38], and image labeling [10, 18, 40, 64]. White-
hill et al. [64] proposed a generative Bayesian model for the
labeling process that includes the labelers’ areas of exper-
tise, adversarial labelers, and the difficulty of the labeling
task. Welinder et al. [63] extended the model by considering
labelers’ bias. Other work used different models, such as
approximate variational methods, to rank labelers [18, 39].
Closely related to the generative Bayesian model we use in
our work, Raykar et al. [40] proposed a discriminative ap-
proach to learn from the noisy labels of multiple experts.
One way that our work differs from is that we only use the
generative part of the model, i.e., we do not include addi-
tional features outside of the AV labels themselves, and we
further constrain the Beta priors to be asymmetrical. We do
so to model our prior domain knowledge that vendors have
both low false and true positive rates. We also mention two
additional models.

Delayed Labeling for Ground Truth. We now discuss
work which either incorporates or measures the delay in
availability of accurate evaluation labels for malicious con-
tent. Evaluations may incorporate labeling delay by insert-
ing a waiting period between the collection and labeling of
evaluation data. Some prior work allows a fixed delay for
labeling evaluation data, while other work periodically up-
dates labels until labels cease to change. Outside of the
context of an evaluation, work may directly measure ven-
dor delay in detecting malicious binaries. Table 2 presents
an overview of prior work involving label delay; we discuss
each work individually to provide greater insight into current
practice and knowledge.

We begin by reviewing work using family labels to distin-
guish various types of malicious content. Bailey et al. present
an unsupervised clustering approach for detection of similar
malware instances. Rieck et al. present a supervised ap-
proach to detection of new variants of malware families [42].
In further work, Rieck et al. integrate unsupervised methods
for the detection of new malware families [44].

Separate from work utilizing labels to distinguish families of
malware, prior work also demonstrates a delay in binary la-
bels distinguishing benign and malicious content. Smutz et al.
study detection of malicious PDF documents and collect
evaluation data over a period of one week [55]. Rajab et al.
present an approach to malware detection using instance
metadata and evaluate the approach against labels from a
proprietary malware detector. Using the same data source
as we use to validate their malware detector, Rajab et al.
select 2,200 binaries from a single day that are not found in
VirusTotal and submit the binaries to VirusTotal [37]. Af-
ter 10 days, VirusTotal rescans the 2,200 binaries to provide
an evaluation labeling for the private malware detector. The
evaluation makes no claim that all malware detection occurs
in the 10 day period, and does not rescan instances later to
check for new detections. Miller et al. use a superset of the
executables we use in this paper to evaluate a malware de-
tector [27]. For executables that were not clearly malicious
(10 or more positive scans), they use a delay of at least 7
months to create ground-truth labels. They do not explore
techniques for weighting anti-virus vendor labels and just
use an unweighted threshold.



Ground-truth approach Work

Manual labeling Chau et al. 2011 [6], Overveldt et al. 2012 [33], Schwenk et al. 2012 [52]

Collection Kolter et al. 2006 [15], Reddy et al. 2006 [41], Masud et al. 2007 [23], Stolfo et al. 2007 [57],
Masud et al. 2008 [24], Gavrilut et al. 2009 [13] , Tabish et al. 2009 [59], Menahem et
al. 2009 [26], Schmidt et al. 2009 [50] , Tian et al. 2009 [61] Santos et al. 2010 [46], Rieck
et al. 2010 [43], Alazab et al. 2011 [1], Curtsinger et al. 2011 [7], Santos et al. 2011 [47],
Maiorca et al. 2012 [20], Sahs et al. 2012 [45], Sanz et al. 2012 [49], Tahan et al. 2012 [60],
Markel et al. 2014 [22]

Single AV Schultz et al. 2001 [51], Shih et al. 2005 [54], Henchiri et al. 2006 [14], Ye et al. 2008 [66], Ye
et al. 2009 [65], Nissim et al. 2014 [32], Santos et al. 2009 [48], Dahl et al. 2013 [8], Stringhini
et al. 2013 [58]

Multiple AVs with threshold Laskov et al. 2011 [16], Gascon et al. 2013 [12], Perdisci et al. 2008 [35], Šrndic et al. 2013 [56],
Nissim et al. 2014 [30]

Table 1: The ground-truth labeling approach of prior work in file-based malware detection. The majority of the prior work
collects data and label from well-known malware collections, such as VX Heavens.

Author Year Objective Collection Period Delay # Vendors

Bailey et al. [3] 2007 Family Name 7 Months 13 Days 5

Rieck et al. [42] 2008 Family Name 5 Months 4 Weeks 1

Perdisci et al. [36]† 2010 Detection 6 Months <1 Month 1

Rieck et al. [44] 2011 Family Name 7 Days 8 Weeks 1

Smutz et al. [55] 2012 Detection 1 Week 10 Days 5

Rajab et al. [37] 2013 Detection 1 Day 10 Days 45

Damballa et al. [9] 2014 Detection 10 Months 6 Months 4

Miller et al. [27] 2015 Detection 30 Months 7 Months 32

This paper 2015 Detection 30 Months ≥ 4 Weeks 34

†Collection occurs from February to July 2009 with detection in August 2009. Perdisci et al. report
monthly detection results for the best of three vendors included in the evaluation, demonstrating a
decrease in detections in more recent months but not claiming labels are stabilized in any month.

Table 2: Prior work recognizing or examining the delay required for accurate vendor labels. Objective indicates the type of
label required by the work, with Family Name corresponding labels distinguishing various types of malicious behavior, and
Detection corresponding to works distinguishing malicious from benign content.



Prior work also approaches detection latency from the per-
spective of evaluating vendors rather than evaluating a de-
tector. As part of a study identifying malware generating
HTTP traffic, Perdisci et al. collect a dataset comprised en-
tirely of known malicious instances from February to July
2009 and scan all instances using detectors from three ven-
dors in August 2009 [36]. In a similar approach, Damballa
collects instances from January to October 2014 and regu-
larly scans the instances with four vendor products [9]. Both
of the work collected useful statistics about anti-virus ven-
dors’ detection rate over time. Our work differs from them
as we explore different statistical models to weight vendor
to improve ground-truth labels.

3. AGGREGATING AV LABELS
We now describe three techniques for aggregating multiple
anti-virus vendor labels into a single authoritative label. Let
N be the number of instances and M be the number of ven-
dors. We are provided with an N × M binary matrix X
where each entry Xi,j represents the label assigned by ven-
dor j to instance i. All three techniques produce aggregation
functions which belong to the class of thresholded weighted
sum of individual vendors decisions: they assign a positive
label to instance i if and only if

∑M
j=1 cjXi,j > τ for fixed

model-dependent coefficients (cj)j≤M and threshold τ .

We present two techniques that do not require any addi-
tional data aside from the vendors’ labels X. We borrow
an unsupervised generative Bayesian model from the crowd
sourcing literature [10] and equip it with suitable priors.
The model attempts to learn vendors’ true and false posi-
tive rates in the absence of ground truth. We describe an
additional simple supervised classification strategy which as-
sumes the availability of at least partial ground-truth labels.

3.1 Unweighted Threshold
The unweighted threshold technique assigns equal weight to
all vendors: c1 = · · · = cM = 1. The advantage of this tech-
nique is that it does not require any learning from X. The
only free parameter is τ , which becomes a tunable hyper-
parameter specifying the required level of agreement. The
downside of unweighted threshold is that it assigns an equal
importance to all anti-virus vendors. This equal importance
can be problematic in several plausible scenarios. First, if
one or more vendors have a significant false positive rate, the
unweighted threshold decision for small τ values will also
suffer a large false positive rate. Second, the unweighted
threshold is unable to take advantage of vendors with very
low false positive rates. Indeed, if vendor k has exactly zero
false positives, then a strictly better aggregation model can
be obtained by setting ck =∞.

3.2 Unsupervised Learning: Generative Model
Even in the absence of ground-truth labels, it is possible to
improve the unweighted scheme. Consider the case of three
independent vendors, two of which have zero false positive
rate and 50% true positive rate, the remaining vendor is
pure random noise with 50% true and false positives. Even
without looking at the ground truth, the first two vendors
will tend to agree much more often between themselves than
with the third vendor, which behaves erratically. Given the
independence of vendors assumption, the best (maximum

likelihood) explanation for this is that the first two vendors
are more correlated with the hidden ground truth than the
last vendor, and should thus receive larger c weights in the
aggregation function. The generative model which follows
captures and refines this intuition.

We now describe a simple generative Bayesian model, for
recovering the hidden ground-truth labels from X. Figure 1
presents the model in plate notation. The main simplify-
ing assumption for our generative model is that given the
ground-truth label of an instance, any two vendor labels are
independent. Thus, this model does not account for vendor
collusion which can for example happen when vendors share
their findings with each other. This approach can be refered
to as a Bayesian naive Bayes.

Z

X

α β

π θ

φ ψ

N
M

Figure 1: Generative model in plate notation. θ, ϕ, ψ
are constant hyperparameters, π, Z, α, β are hidden ran-
dom variables, and X is the only observed random variable.
There are N instances and M vendors.

In this model, (Xi,j)i≤N,j≤M is the only observed data. The
label Xi,j ∈ {0, 1} of vendor j on instance i depends on the
hidden ground-truth label Zi ∈ {0, 1} for instance i and the
vendor’s true positive and false positive rates αj ∈ [0, 1] and
βj ∈ [0, 1] respectively. Formally, we have:

p(Xi,j |αj , βj , Zi) =


αj if Zi = 1 and Xi,j = 1 (TP)

1− αj if Zi = 1 and Xi,j = 0 (FN)

βj if Zi = 0 and Xi,j = 1 (FP)

1− βj if Zi = 0 and Xi,j = 0 (TN)

The hidden ground-truth label Zi is taken to be a Bernoulli
distribution with unobserved parameter π ∈ [0, 1]. We have:

p(Zi|π) = π

Finally, we equip this model with three priors on the dis-
tribution parameters π, α, β which serve both as regulariza-
tion devices and encode our prior knowledge for this do-
main. We regularize π by a symmetric Beta distribution
Beta(1 + θ, 1 + θ) for θ ≥ 0. When θ = 0, this corresponds
to a uniform prior over [0, 1] on the value of π. As θ in-
creases, the prior’s mass gets concentrated around 1

2
. All αs

and βs are regularized by the same hyperparameters ϕ and
ψ respectively. Since our prior domain knowledge is that
the vendors true positive and false positive rates are both
expected to be low, we choose the asymmetric Beta priors



Beta(1, 1 + ϕ) and Beta(1, 1 + ψ). Figure 2 shows the ef-
fect of different values of ϕ on p(α|ϕ). Large values of ϕ
correspond to shifting the prior mass towards 0. We have:

p(π|θ) = Beta(θ + 1, θ + 1) ∝ πθ(1− π)θ

p(αj |ϕ) = Beta(1, ϕ+ 1) ∝ (1− αj)ϕ

p(βj |ψ) = Beta(1, ψ + 1) ∝ (1− βj)ψ

Figure 2: Asymmetric p(α|ϕ) = Beta(1, ϕ+1) prior densities
on the vendors true positive rates αs. Larger values of ϕ
favor smaller true positive rates.

Inference. When the parameters α, β, π are known, infer-
ring the most likely ground-truth label Zi out of theM labels
Xi,1, . . . , Xi,M reduces to a simple Naive Bayes. We have:

p(Z = 1|X,α, β, π) =
p(X|Z = 1, α, β)p(Z = 1|π)∑

z∈{0,1} p(X|Z = z, α, β)p(Z = 1|π)

=

1 +
1− π
π

∏
j≤M

a
X:,j

j b
1−X:,j

j

−1

(1)

where aj =
βj
αj

and bj =
1−βj
1−αj

are the vendors likelihood

ratios. Here we use the slicing notation X:,j to refer to
column j of matrix X, and take all arithmetic operations to
be pointwise.

Learning. For learning, we use a standard log-likelihood
maximization strategy. Because we have the unobserved
variable Z, we use the Expectation Maximization (EM) it-
erative method [10] for maximizing the log likelihood. Sup-
pose that the ground-truth data Z is observed. The log
likelihood Lθ,ϕ,ψ,X,Z of the model would then be:

Lθ,ϕ,ψ,X,Z(α, β, π) = ln p(X,Z|α, β, π, θ, ϕ, ψ) (2)

= ln p(Z|π) + ln p(π|θ) + ln p(X|α, β, Z)

+ ln p(α|ϕ) + ln p(β|ψ)

One can further completely separate the log likelihood into
three parts:

Lθ,ϕ,ψ,X,Z = LCθ,Z(π) + LAϕ,X,Z(α) + LBψ,X,Z(β)

Dropping the constant subscripts, each part is defined up to
a constant additive term as:

LC(π) =
∑

i
Zi lnπ + (1− Zi) ln(1− π)

+ θ lnπ + (1− θ) ln(1− π)

LA(α) =
∑

i
Zi

∑
j
Xi,j lnαj + (1−Xi,j) ln(1− αj)

+ ϕ
∑

j
ln(1− αj)

LB(β) =
∑

i
(1− Zi)

∑
j
Xi,j lnβj + (1−Xi,j) ln(1− βj)

+ ψ
∑

j
ln(1− βj)

Maximizing L yields the following regularized “counting” es-
timators for α, β, π:

π ←
θ +

∑
i Zi

2θ +N
(3)

∀j, αj ←
∑
i ZiXi,j

ϕ+
∑
i Zi

(4)

∀j, βj ←
∑
i(1− Zi)Xi,j

ψ +
∑
i(1− Zi)

(5)

The idea behind EM is to replace each occurrence of the
hidden variable Z in the log likelihood (2) by its expectation
E [Z|X,α, β, π] for given fixed values of α, β, π. Because Z is
(a vector of) Bernoulli variables, we have E [Z|X,α, β, π] =
p(Z = 1|X,α, β, π), which then can be computed using the
Naive Bayes formula (1). Hence, at every iteration t, EM

alternates between computing the expected value Z̃t of the
Z variable for the current model variables (αt, βt, πt) (E-
step) and create the next iteration model variables using

updates (3-5) and Z̃t in lieu of Z (M-step). The process can
be initialized with either a starting Z0 vector of ground-
truth labels, or a starting model (α0, β0, π0), and finishes
when ‖αt+1−αt‖1+‖βt+1−βt‖1+|πt+1−πt| ≤ δ for a fixed
δ. To alleviate stability issues, we additionally introduce a
clipping parameter ε such that no model variable is smaller
than ε or larger than 1 − ε. In our implementation, we use
the fixed values δ = 10−12 and ε = 10−3.

3.3 Supervised Classification
In some cases, the evaluator can gain access to more trust-
worthy labels for a subset of the data, for example, by man-
ual analysis. When trustworthy labels are available, it be-
comes possible to use supervised learning to assign weights
to vendors. This approach uses the executables with trust-
worthy labels as the training set. The vendor labels are the
input features and the trustworthy labels are the training
labels that the learned classifier attempts to predict from
the vendor labels. The evaluator can use the learnt classi-
fier on executables for which trustworthy labels do not exist
to assign an aggregate label from the vendor labels.

In this paper, we use a classic a linear separation model
for the learning algorithm. In particular, we use a L2-
regularized logistic regression for finding the optimal linear
separator. For the training data, we consider the case where
the evaluator has ground truth for nl randomly selected in-
stances. We then construct a labeled training dataset con-
sisting of those nl instances and proceed to learn the linear



classifier on those instances. We use nl to quantify the la-
beling effort needed for this scheme to succeed. Large values
for nl make this method impractical, but a sufficiently small
number of ground-truth-labeled instances is possible in some
situations. For instance, a human malware expert might be
able to provide the ground truth for a small number of exe-
cutables.

4. EVALUATION DATASET
In this section we examine the dataset we use for our evalua-
tion. The final dataset is constructed as a subset of a larger
datastream we have previously collected. We describe and
characterize this datastream first, and then use the observa-
tions to construct an evaluation dataset with a high-quality
approximation of ground-truth labels.

4.1 The Datastream
We use over one million distinct SHA256 hashes of Windows
x86 binary executables (both malware and benign) that were
submitted to VirusTotal between January 2012 and June
2014, and collected by Miller et al. [27]. For each file sub-
mission or resubmission, VirusTotal scans the file with up-
to-date virus detectors and records the individual decisions
of the AV vendors. Hence, a given executable hash will not
only have multiple sets of multiple AV labels, corresponding
to all historical scan events, from the first time the file was
submitted, until the most recent resubmission. We collect
all historical scan events for all hashes, but we do not have
access to the executables.

Although we observe scan results from 80 distinct AV en-
gines, some of these detectors are only sporadically present
in the data. To obtain a consistent subset of both executa-
bles and vendors such that all vendors are present in all
scans of all executables, we focus on the 34 vendors that
appears in the most scans: AVG, Antiy-AVL, Avast, BitDe-
fender, ByteHero, CAT-QuickHeal, ClamAV, Comodo, Dr-
Web, ESET-NOD32, Emsisoft, F-Prot, F-Secure, Fortinet,
GData, Ikarus, K7AntiVirus, Kaspersky, McAfee, McAfee-
GW-Edition, Microsoft, Norman, nProtect, Panda, SUPER-
AntiSpyware, Sophos, Symantec, TheHacker, TotalDefense,
TrendMicro, TrendMicro-HouseCall, VBA32, VIPRE, Vi-
Robot. We select the executables for which all of these
vendors actually scan executable in all of its submissions.
This requirement reduces the number of available distinct
executables to about 734,000.

4.2 Deriving Ground-Truth Labels
We turn to the problem of assigning ground truth for future
evaluation purposes in our dataset in the absence of actual
executable files. To illustrate the difficulty of the problem
and lack of consensus between vendors, Figure 3 shows a
heat map of the matrix of pairwise correlation coefficients
over the first-seen scan of all of the 734,000 executables.
Note that the vendors are ordered such that highly cor-
related vendors appear as close to each other as possible,
by agglomerative clustering using complete linkage. While
there are a few noticeable square blocks of highly correlated
vendors, the average correlation coefficient is only around
0.5, showing a clear lack of consensus between AV vendors.
One vendor is barely correlated with the others as shown by
the last row being nearly white.

Figure 3: Label correlations between vendors.

Figure 4: Difference in the number of positive detections
between the first and last scans for each instance.

Fortunately, the sub-selected datastream has a temporal di-
mension that we can exploit to produce ground-truth labels.
Figure 4 presents the histogram of the differences in the to-
tal number of positive detections between the first and last
scan for a given instance. First, notice that there are of-
ten changes in the number of positives (malware) between
the first and last scans, demonstrating that AV vendors
change their labeling over time. Second, notice that the
change overwhelmingly favors increasing the number of pos-
itive scan results, confirming that vendors catch up on their
initial false negatives, and only suffer negligible initial false
positive rates.

Figure 5 illustrates this behavior in a different way. For both
of the first-seen (hatched red) and last-seen (blue) scan, we
plot the histogram of the number of positive detections per
instance. The final scan tends to be less likely to have zero
positive detections from the 34 vendors, and more likely to
exhibit a large number (≥ 10) detections compared to the



Figure 5: Number of initial and final detections for each
instance.

Figure 6: The likelihood of label change during rescan as a
function of age of the most recent detection results.

initial scan. Note the relatively few executables in the flat
region for 3 to 9 future detections. This region represents a
transition zone from those executables that are most likely
benign to those that are most likely malicious.

Making use of the observed transition, we select a threshold
for declaring a executable to be malicious that lays within
it. In particular, if the most up-to-date scan of a file has
3 or fewer detections, we deem it benign. On the other
hand, if it receives 4 or more positive scans, we deem it
malware for ground-truth purposes. Note that because there
are relatively few executables in the flat region of 3 to 9
future detections, choosing any threshold within this range
tends to produce a similar ground-truth labeling.

We consider how to know whether the last-seen scan appears
long enough after the first-seen scan to give the AV vendors
long enough to revise and stabilize their decisions:

Figure 6 shows the likelihood of a vendor changing its la-
bel as a function of time from the first scan. Notice that
younger labels are more likely to change during a rescan
than older labels, confirming that labels stabilize over time.

Figure 7: Malware types as detected by Microsoft AV.

Based on this graph, we use only executables for which the
last-seen scan appears at least 4 weeks after the first-seen
scan. This last constraint reduces our available data down
to 279,327 executables for which we can assert ground truth
with reasonably high certainty. Figure 7 shows the high de-
gree of diversity of malware for this sample by measuring
the proportions of malware types as detected by Microsoft
AV.

In summary, we have constructed a subset of the datastream
such that every binary is always scanned by all of the 34
vendors and has a last-seen scan at least 4 weeks older than
its first-seen scan. For these executables, we set ground
truth using threshold of 4 positive detections on the last-
seen scans. This subset has 279,327 distinct instances, 78%
of which are labeled malicious according to our ground-truth
approach.

4.3 Evaluation Dataset Construction
To show how well our approaches can predict the ground-
truth labels, we divide our dataset of first-seen scans into
temporally consistent training and testing subsets. To en-
sure temporal consistency we require that both the training
executables and their associated initial scans (and labels)
are older than the testing executables and their initial scans.
Temporal consistency is important for realistic evaluations
as in the real world we can only have access to present and
historical data. Note that the last-seen “future” scans are
only used for building the ground-truth labels, and that the
learning methods are exclusively trained on the first-seen
“present” scans data. We choose a time boundary between
training and testing such that there are exactly 100,000 in-
stances in the testing set, and thus 179,327 instances avail-
able for training.

5. RESULTS
We evaluate the unsupervised model and the supervised
classification techniques described in section 3. For each
method, we forgo the problem of finding the optimal thresh-
old τ and instead plot the true positive and false positive per-
formance of the method for all possible thresholds τ . Since
the focus in the malware detection task is towards methods
with low false positive rates, we plot the Receiver Operation
Characteristic (ROC) curves on a logarithmic false positive



scale between 0.08% and 10% false positive rates. The per-
formance of the unweighted threshold method at different
thresholds is always shown for comparison purposes.

5.1 Generative Model
We observe that EM gives remarkably consistent models for
a range of initialization choices. In what follows, we choose
to initialize EM by setting Z0 to unweighted threshold at
τ = 4 on the training data. Rerunning the experiments
using thresholds of τ = 2, 3, 5, 6, 7 lead to the same final
model. The number of EM iterations is always smaller than
500, and can drop down to 37 depending on the choice of
hyperparameters.

For the hyperparameter θ, we simply fix it to 0 to maximize
the uncertainty over π. For ϕ and ψ, we use a grid search to
find the combination of ϕ ∈ {0, 0.1N, 0.2N, . . . , 2N} and
ψ ∈ {0, 0.1N, . . . , 0.5N} that maximizes the area of the
training ROC curve between 0 and 0.1% false positive rate
where N is the number of training executables. To keep the
learning unsupervised, the false positive rate is not com-
puted using the ground-truth labels, but rather the equally
weighted threshold method (τ = 4) using the training-time
labels. That is, for hyperparameter selection, training in-
stance i is labeled malicious if and only if

∑
j Xi,j ≤ 4,

without appealing to any future information.

The thin red curve on Figure 8a shows the performance
of the model at labeling the executables on which it was
trained. Here, the labels produced by the model are graded
against the testing-time ground-truth labels computed from
the future scans as described in Section 4.2.

We repeated the above experiment using separate training
and testing sets of executables. Since this training set comes
from executables earlier in our datastream, this experiment
explores how useful parameters selected for labeling one set
are for labeling future sets, thereby shedding light on the
need for retraining and the stability of vendor quality. In
particular, it shows the penalty in accuracy incurred from
not retraining for each new executable to be labeled and
using an out-of-date model. The thick green curve in Fig-
ure 8a shows the performance of the model when trained
on old executables. The results show that additional per-
formance gains can be obtained by retraining the generative
model on the most recent available data.

To better understand the impact of tuning the hyperparam-
eters ϕ and ψ, we repeated the experiment using the training
ground-truth labels to select the values of the hyperparam-
eters (but not to select the values of the model parameters
during training). In these experiments, the hyperparame-
ters are set to our best estimates of their true values, which
approximates what a careful analyst could achieve using do-
main knowledge. Figure 8b shows the results: they barely
change. The results suggest that the performance of the EM-
trained generative model is stable, even for different choices
of priors ϕ and ψ, which is encouraging for practical situ-
ations where finding the “best” hyperparameters is difficult
or impossible due to lack of ground truth.

In summary, we observe that in all cases the performance
of the model is strictly better than the base line unweighted

(a) Training data alone.

(b) Given training ground truth for validating ϕ,ψ.

Figure 8: ROC at low false positive rates for the generative
model. θ = 0 is fixed. In a, the hyperparameters ϕ = 1.1N
and ψ = 0.4N are found by relying on the training data
alone (no ground-truth labels). In b, ϕ = 1.7N and ψ =
0.1N are found by relying on ground truth for the training
data.

threshold, with the largest gains (4 to 5 percentage points)
occurring in the low false positive region.

5.2 Logistic Regression
To evaluate label aggregation by logistic regression, we ran-
domly sample nl ∈ {10, 20, 100} training executables for
which we reveal the ground-truth label. We then train a
logistic regression model for each of these training subsets.
We also train a best case logistic regression model on the
whole training data, in which case we have nl = 179, 327.
In all cases, we use LibLinear [11] with the L2 regularization
parameter C kept constant at C = 1.

Figure 9 presents the ROC curves of the logistic regression
models at test time. For a sufficiently large sample size nl,
the model improves over any unweighted threshold method.
In the limit when ground truth is available for all training
executables, the model increases the true positive rate by
about 25 percentage points over unweighted threshold at



Figure 9: ROC at low false positive rates for logistic regres-
sion, with different numbers of labeled executables nl.

0.1% false positive rate. Even when nl = 100, the perfor-
mance improvement is still noticeable: 20 percentage points.

The low number nl of ground-truth labels needed to achieve
a large improvement comes from the relatively low dimen-
sionality of the problem: there are only 34 binary features,
so we only need about the same order of magnitude random
observations to learn a useful model.

6. CONCLUSION AND FUTURE WORK
This paper investigates the problem of combining multiple
anti-virus vendor labels into a single authoritative ground-
truth label. We present both an unsupervised and a super-
vised technique to assign confidence weights to vendors. The
unsupervised approach uses Expectation Maximization to
train a generative Bayesian model from the crowd-sourcing
literature. This technique estimates each vendor’s true and
false positive rates in the absence of ground truth. We also
describe a supervised but parsimonious classification scheme
for improving label quality.

Using a large-scale real-world dataset, we demonstrate that
these approaches can predict the ground-truth label of ini-
tially confusing instances. Our evaluation construction as-
sumes that AV vendors eventually correct their choices to
reflect the ground truth. The purely unsupervised approach
produces modest improvements over the basic equally-weighted
voting scheme. The supervised approach improves true-
positive rate by 20 percentage points at 0.1% false positives
with only a hundred ground-truth training labels.

A potentially significant improvement of the generative model
may come from relaxing the vendor independence assump-
tion. For instance, we could augment the model by intro-
ducing pairwise vendor interactions and derive a new ex-
pectation maximization training algorithm for the resulting
model. To further improve the performance of the unsuper-
vised method, we could include additional observed data for
the instance. For example, this supplementary data could
include the feature vector input from a larger malware de-
tector using machine learning. To accommodate this in-
formation, the model could be extended on its generative

side by making the features dependent on the ground-truth
variable, or on its discriminative side by making the ground-
truth variable dependent on the features as in [40].

Finally, one can also consider hybrid approaches. For in-
stance, this problem might benefit from semi-supervised or
active learning techniques. However, the small size of our
feature space, 34 binary features, makes the fully supervised
learning problem already quite efficient in terms of number
of labeled instances as demonstrated by the logistic regres-
sion experiment.

Improved training labels, as obtained by the techniques pre-
sented in this paper, should result in an improved malware
detector.

Acknowledgment
This research is supported in part by Intel’s ISTC for Secure
Computing, NSF grants 0424422 (TRUST) and 1139158,
the Freedom 2 Connect Foundation, US State Dept. DRL,
LBNL Award 7076018, DARPA XData Award FA8750-12-
2-0331, and gifts from Amazon, Google, SAP, Apple, Cisco,
Clearstory Data, Cloudera, Ericsson, Facebook, GameOn-
Talis, General Electric, Hortonworks, Huawei, Intel, Mi-
crosoft, NetApp, Oracle, Samsung, Splunk, VMware, WAN-
disco and Yahoo!. The opinions in this paper are those of the
authors and do not necessarily reflect those of any funding
sponsor or the United States Government.

7. REFERENCES
[1] Alazab, M., Venkatraman, S., Watters, P., and

Alazab, M. Zero-day malware detection based on
supervised learning algorithms of API call signatures.
In Ninth Australasian Data Mining Conference -
Volume 121 (2011).

[2] Bailey, M., Oberheide, J., Andersen, J., Mao,
Z. M., Jahanian, F., and Nazario, J. Automated
classification and analysis of internet malware. In
Recent Advances in Intrusion Detection (2007),
Springer, pp. 178–197.

[3] Bailey, M., Oberheide, J., Andersen, J., Mao,
Z. M., Jahanian, F., and Nazario, J. Automated
classification and analysis of internet malware. In
Recent Advances in Intrusion Detection, 10th
International Symposium, RAID 2007, Gold Goast,
Australia, September 5-7, 2007, Proceedings (2007),
C. Krügel, R. Lippmann, and A. J. Clark, Eds.,
vol. 4637 of Lecture Notes in Computer Science,
Springer, pp. 178–197.

[4] Biggio, B., Nelson, B., and Laskov, P. Poisoning
attacks against support vector machines. In In
International Conference on Machine Learning (ICML
(2012).

[5] Canto, J., Dacier, M., Kirda, E., and Leita, C.
Large scale malware collection: Lessons learned. In
IEEE SRDS Workshop on Sharing Field Data and
Experiment Measurements on Resilience of Distributed
Computing Systems (2008).

[6] Chau, D., Nachenberg, C., Wilhelm, J., Wright,
A., and Faloutsos, C. Polonium: Tera-scale graph
mining and inference for malware detection. SIAM
International Conference on Data Mining (2011).

[7] Curtsinger, C., Livshits, B., Zorn, B., and
Seifert, C. ZOZZLE: Fast and precise in-browser
JavaScript malware detection. In Proceedings of the
20th USENIX Conference on Security (2011), SEC’11,
USENIX Association, pp. 3–16.



[8] Dahl, G. E., Stokes, J. W., Deng, L., and Yu, D.
Large-scale malware classification using random
projections and neural networks. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE
International Conference on (2013), IEEE,
pp. 3422–3426.

[9] Damballa. State of Infections Report: Q4 2014.
Tech. rep., Damballa, 2015.

[10] Dawid, A. P., and Skene, A. M. Maximum
likelihood estimation of observer error-rates using the
em algorithm. Applied Statistics (1979), 20–28.

[11] Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang,
X.-R., and Lin, C.-J. LIBLINEAR: A library for
large linear classification. Journal of Machine
Learning Research 9 (2008).

[12] Gascon, H., Yamaguchi, F., Arp, D., and Rieck,
K. Structural detection of android malware using
embedded call graphs. In Proceedings of the 2013
ACM Workshop on Artificial Intelligence and Security
(2013), AISec ’13, ACM, pp. 45–54.

[13] Gavrilut, D., Cimpoesu, M., Anton, D., and
Ciortuz, L. Malware detection using perceptrons and
support vector machines. In Computation World
(2009), pp. 283–288.

[14] Henchiri, O., and Japkowicz, N. A feature
selection and evaluation scheme for computer virus
detection. In Sixth Intl. Conf. on Data Mining (2006),
pp. 891–895.

[15] Kolter, J. Z., and Maloof, M. A. Learning to
detect and classify malicious executables in the wild.
J. Machine Learning Research 7 (2006).

[16] Laskov, P., and Šrndić, N. Static detection of
malicious JavaScript-bearing PDF documents. In
Proceedings of the 27th Annual Computer Security
Applications Conference (2011), ACSAC ’11, ACM,
pp. 373–382.

[17] Li, P., Liu, L., Gao, D., and Reiter, M. K. On
challenges in evaluating malware clustering. In Recent
Advances in Intrusion Detection (2010), Springer,
pp. 238–255.

[18] Liu, Q., Peng, J., and Ihler, A. T. Variational
inference for crowdsourcing. In Advances in Neural
Information Processing Systems (2012), pp. 692–700.

[19] Maggi, F., Bellini, A., Salvaneschi, G., and
Zanero, S. Finding non-trivial malware naming
inconsistencies. In Information Systems Security.
Springer, 2011, pp. 144–159.

[20] Maiorca, D., Giacinto, G., and Corona, I. A
pattern recognition system for malicious PDF files
detection. In Proceedings of the 8th International
Conference on Machine Learning and Data Mining in
Pattern Recognition (2012), MLDM’12,
Springer-Verlag, pp. 510–524.

[21] Mann, G. S., and McCallum, A. Generalized
expectation criteria for semi-supervised learning with
weakly labeled data. J. Mach. Learn. Res. 11 (Mar.
2010), 955–984.

[22] Markel, Z., and Bilzor, M. Building a machine
learning classifier for malware detection. In
Anti-malware Testing Research (WATeR), 2014
Second Wksp. on (2014), pp. 1–4.

[23] Masud, M., Khan, L., and Thuraisingham, B. A
hybrid model to detect malicious executables. In
Communications, 2007. ICC ’07. IEEE International
Conference on (June 2007), pp. 1443–1448.

[24] Masud, M. M., Khan, L., and Thuraisingham,
B. M. A scalable multi-level feature extraction
technique to detect malicious executables. Information
Systems Frontiers 10, 1 (2008), 33–45.

[25] McAfee Labs. McAfee Labs Threats Report. Tech.
rep., McAfee, 2014.

[26] Menahem, E., Shabtai, A., Rokach, L., and
Elovici, Y. Improving malware detection by applying
multi-inducer ensemble. Comput. Stat. Data Anal. 53,
4 (Feb. 2009), 1483–1494.

[27] Miller, B., Kantchelian, A., Afroz, S.,
Bachwani, R., Faizullabhoy, R., Huang, L.,
Shankar, V., Tschantz, M. C., Wu, T., Yiu, G.,
Joseph, A. D., and Tygar, J. D. Back to the
future: Malware detection with temporally consistent
labels. Under submission, 2015.

[28] Mohaisen, A., and Alrawi, O. Av-meter: An
evaluation of antivirus scans and labels. In Detection
of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2014, pp. 112–131.

[29] Nigam, K., McCallum, A. K., Thrun, S., and
Mitchell, T. Text classification from labeled and
unlabeled documents using em. Machine Learning 39,
2-3 (2000), 103–134.

[30] Nissim, N., Cohen, A., Moskovitch, R., Shabtai,
A., Edry, M., Bar-Ad, O., and Elovici, Y. ALPD:
Active learning framework for enhancing the detection
of malicious PDF files. In IEEE Joint Intelligence and
Security Informatics Conf. (2014), pp. 91–98.

[31] Nissim, N., Moskovitch, R., Rokach, L., and
Elovici, Y. Novel active learning methods for
enhanced pc malware detection in windows os. In J.
Expert Systems with Applications (2014).

[32] Nissim, N., Moskovitch, R., Rokach, L., and
Elovici, Y. Novel active learning methods for
enhanced PC malware detection in windows OS.
Expert Systems with Applications 41, 13 (2014), 5843 –
5857.

[33] Overveldt, T. V., Kruegel, C., and Vigna, G.
Flashdetect: Actionscript 3 malware detection. In
Research in Attacks, Intrusions, and Defenses - 15th
International Symposium, RAID 2012 (2012),
D. Balzarotti, S. J. Stolfo, and M. Cova, Eds.,
vol. 7462 of Lecture Notes in Computer Science,
Springer, pp. 274–293.

[34] Perdisci, R., et al. VAMO: Towards a fully
automated malware clustering validity analysis. In
Proceedings of the 28th Annual Computer Security
Applications Conference (2012), ACM, pp. 329–338.

[35] Perdisci, R., Lanzi, A., and Lee, W. Mcboost:
Boosting scalability in malware collection and analysis
using statistical classification of executables. In
Computer Security Applications Conference, 2008.
ACSAC 2008. Annual (2008), pp. 301–310.

[36] Perdisci, R., Lee, W., and Feamster, N.
Behavioral clustering of HTTP-based malware and
signature generation using malicious network traces.
In Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation
(2010), NSDI’10, USENIX Association, pp. 26–26.

[37] Rajab, M. A., Ballard, L., Lutz, N.,
Mavrommatis, P., and Provos, N. CAMP:
Content-agnostic malware protection. In 20th Annual
Network and Distributed System Security Symposium,
NDSS (2013).

[38] Ramakrishnan, G., Chitrapura, K. P.,
Krishnapuram, R., and Bhattacharyya, P. A
model for handling approximate, noisy or incomplete
labeling in text classification. In Proceedings of ICML
(2005).

[39] Raykar, V. C., and Yu, S. Ranking annotators for
crowdsourced labeling tasks. In Advances in Neural
Information Processing Systems (2011),
pp. 1809–1817.

[40] Raykar, V. C., Yu, S., Zhao, L. H., Jerebko, A.,
Florin, C., Valadez, G. H., Bogoni, L., and
Moy, L. Supervised learning from multiple experts:
whom to trust when everyone lies a bit. In Proceedings



of the 26th Annual International Conference on
Machine Learning (2009), ACM, pp. 889–896.

[41] Reddy, D. K. S., and Pujari, A. K. N-gram
analysis for computer virus detection. Journal in
Computer Virology 2, 3 (2006), 231–239.

[42] Rieck, K., Holz, T., Willems, C., Düssel, P.,
and Laskov, P. Learning and classification of
malware behavior. In Proceedings of the 5th
International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (2008),
DIMVA ’08, Springer-Verlag, pp. 108–125.

[43] Rieck, K., Krueger, T., and Dewald, A. Cujo:
Efficient detection and prevention of
drive-by-download attacks. In Proceedings of the 26th
Annual Computer Security Applications Conference
(2010), ACSAC ’10, ACM, pp. 31–39.

[44] Rieck, K., Trinius, P., Willems, C., and Holz,
T. Automatic analysis of malware behavior using
machine learning. J. Comput. Secur. 19, 4 (Dec.
2011), 639–668.

[45] Sahs, J., and Khan, L. A machine learning approach
to android malware detection. In Intelligence and
Security Informatics Conference (EISIC), 2012
European (Aug 2012), pp. 141–147.

[46] Santos, I., Brezo, F., Nieves, J., Penya, Y. K.,
Sanz, B., Laorden, C., and Bringas, P. G. Idea:
Opcode-sequence-based malware detection. In
Engineering Secure Software and Systems, Second
International Symposium, ESSoS 2010 (2010),
F. Massacci, D. S. Wallach, and N. Zannone, Eds.,
vol. 5965 of Lecture Notes in Computer Science,
Springer, pp. 35–43.

[47] Santos, I., Nieves, J., and Bringas, P. G.
Semi-supervised learning for unknown malware
detection. In International Symposium on Distributed
Computing and Artificial Intelligence, DCAI 2011,
Salamanca, Spain, 6-8 April 2011 (2011),
A. Abraham, J. M. Corchado, S. Rodŕıguez-González,
and J. F. D. P. Santana, Eds., vol. 91 of Advances in
Soft Computing, Springer, pp. 415–422.

[48] Santos, I., Penya, Y. K., Devesa, J., and
Bringas, P. G. N-grams-based file signatures for
malware detection. In ICEIS 2009: Proceedings of the
11th International Conference on Enterprise
Information Systems (2009), J. Cordeiro and J. Filipe,
Eds., pp. 317–320.

[49] Sanz, B., Santos, I., Laorden, C.,
Ugarte-Pedrero, X., Bringas, P. G., and

Marañón, G. Á. PUMA: permission usage to detect
malware in android. In International Joint Conference
CISIS’12-ICEUTE’12-SOCO’12 Special Sessions

(2012), Á. Herrero, V. Snásel, A. Abraham, I. Zelinka,
B. Baruque, H. Quintián-Pardo, J. L. Calvo-Rolle,
J. Sedano, and E. Corchado, Eds., vol. 189 of
Advances in Intelligent Systems and Computing,
Springer, pp. 289–298.

[50] Schmidt, A.-D., Bye, R., Schmidt, H.-G.,
Clausen, J., Kiraz, O., Yüksel, K. A., Camtepe,
S. A., and Albayrak, S. Static analysis of
executables for collaborative malware detection on
android. In Proceedings of the 2009 IEEE
International Conference on Communications (2009),
IEEE Press, pp. 631–635.

[51] Schultz, M. G., Eskin, E., Zadok, E., and
Stolfo, S. J. Data mining methods for detection of
new malicious executables. In Proceedings of the 2001
IEEE Symposium on Security and Privacy (2001), SP
’01, IEEE Computer Society, pp. 38–49.

[52] Schwenk, G., Bikadorov, A., Krueger, T., and
Rieck, K. Autonomous learning for detection of
javascript attacks: Vision or reality? In ACM Wksp.
on Artificial Intelligence and Security (AISec) (2012).

[53] Sheng, V. S., Provost, F., and Ipeirotis, P. G.
Get another label? improving data quality and data
mining using multiple, noisy labelers. In Proceedings of
the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining (2008), ACM,
pp. 614–622.

[54] Shih, D.-H., Chiang, H.-S., and Yen, C. D.
Classification methods in the detection of new
malicious emails. Information Sciences 172 (2005),
241 – 261.

[55] Smutz, C., and Stavrou, A. Malicious PDF
detection using metadata and structural features. In
Proceedings of the 28th Annual Computer Security
Applications Conference (2012), ACSAC ’12, ACM,
pp. 239–248.

[56] Šrndic, N., and Laskov, P. Detection of malicious
PDF files based on hierarchical document structure. In
Network & Distributed System Security Symp. (2013).

[57] Stolfo, S., Wang, K., and Li, W.-J. Towards
stealthy malware detection. In Malware Detection,
M. Christodorescu, S. Jha, D. Maughan, D. Song, and
C. Wang, Eds., vol. 27 of Advances in Information
Security. Springer US, 2007, pp. 231–249.

[58] Stringhini, G., Kruegel, C., and Vigna, G. Shady
paths: Leveraging surfing crowds to detect malicious
web pages. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications
Security (2013), CCS ’13, ACM, pp. 133–144.

[59] Tabish, S. M., Shafiq, M. Z., and Farooq, M.
Malware detection using statistical analysis of
byte-level file content. In Proceedings of the ACM
SIGKDD Workshop on CyberSecurity and Intelligence
Informatics (2009), CSI-KDD ’09, ACM, pp. 23–31.

[60] Tahan, G., Rokach, L., and Shahar, Y. Mal-id:
Automatic malware detection using common segment
analysis and meta-features. J. Mach. Learn. Res. 13
(Apr. 2012), 949–979.

[61] Tian, R., Batten, L., Islam, M., and Versteeg,
S. An automated classification system based on the
strings of trojan and virus families. In Malicious and
Unwanted Software (MALWARE), 2009 4th
International Conference on (Oct 2009), pp. 23–30.

[62] VirusTotal.
https://www.virustotal.com/en/statistics/.
Retrieved on July 30, 2014.

[63] Welinder, P., Branson, S., Perona, P., and
Belongie, S. J. The multidimensional wisdom of
crowds. In Advances in Neural Information Processing
Systems (2010), pp. 2424–2432.

[64] Whitehill, J., Wu, T.-f., Bergsma, J.,
Movellan, J. R., and Ruvolo, P. L. Whose vote
should count more: Optimal integration of labels from
labelers of unknown expertise. In Advances in Neural
Information Processing Systems (2009),
pp. 2035–2043.

[65] Ye, Y., Chen, L., Wang, D., Li, T., Jiang, Q.,
and Zhao, M. SBMDS: An interpretable string based
malware detection system using SVM ensemble with
bagging, 2009.

[66] Ye, Y., Wang, D., Li, T., Ye, D., and Jiang, Q.
An intelligent pe-malware detection system based on
association mining. Journal in Computer Virology 4, 4
(2008), 323–334.


