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ABSTRACT
Active learning is an area of machine learning examining
strategies for allocation of finite resources, particularly hu-
man labeling efforts and to an extent feature extraction, in
situations where available data exceeds available resources.
In this open problem paper, we motivate the necessity of
active learning in the security domain, identify problems
caused by the application of present active learning tech-
niques in adversarial settings, and propose a framework for
experimentation and implementation of active learning sys-
tems in adversarial contexts. More than other contexts, ad-
versarial contexts particularly need active learning as on-
going attempts to evade and confuse classifiers necessitate
constant generation of labels for new content to keep pace
with adversarial activity. Just as traditional machine learn-
ing algorithms are vulnerable to adversarial manipulation,
we discuss assumptions specific to active learning that intro-
duce additional vulnerabilities, as well as present vulnerabil-
ities that are amplified in the active learning setting. Lastly,
we present a software architecture, Security-oriented Active
Learning Testbed (SALT), for the research and implementa-
tion of active learning applications in adversarial contexts.

Categories and Subject Descriptors
K.6 [Management of Computing and Information Sys-
tems]: Security and Protection; I.2 [Artificial Intelligence]:
Learning; H.1 [Models and Principles]: User/Machine
Systems

Keywords
Secure Machine Learning; Active Learning; Human in the
Loop

1. INTRODUCTION
The scale and diversity of attacks demands that humans

have machine assistance to identify malicious content in a
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timely fashion. For example, the Google anti-phishing plat-
form received over 500 million URLs in four months [56].
Likewise, VirusTotal receives approximately 700,000 sub-
missions of new, unique binaries each day1 [50]. Further
complicating matters, constantly evolving adversarial at-
tempts to evade or corrupt current detectors require prompt
and accurate labeling of new content to maintain accurate
detection.

Active learning is a useful tool when limited resources
are available to label training data and extract features. In
this open problem paper, we argue that we must study the
application of active learning techniques in an adversarial
context. In real world applications the scale of malicious
content prevents labeling in a timely fashion; but systems
proposed in the academic literature frequently assume that
accurate labels will be available for all data in a timely fash-
ion. This divergence with reality presents challenges to the
deployment of these systems and diminishes general faith in
their efficiency. Industry had addressed this gap through
introduction of active learning techniques, as evidenced in
an area survey stating: “software companies and large-scale
research projects such as CiteSeer, Google, IBM, Microsoft,
and Siemens are increasingly using active learning technolo-
gies in a variety of real-world applications” [42]. Google has
published at least two papers identifying its use of active
learning approaches to detect malicious advertisements and
phishing pages [41, 56]. Because the real world has adver-
saries, each of these organizations has developed its own pro-
prietary techniques for dealing with adversaries. However
we believe that it is important to explore large-scale adver-
sarial active machine learning techniques in open academic
research so that all users of active learning may benefit.

There is limited research considering active learning ap-
proaches in the presence of an adversary. The introduction
of active learning techniques may introduce or exacerbate
vulnerabilities in the following ways:

• Selection of Instances for Labeling To achieve
accurate classification, active learning approaches re-
quire ongoing selection of instances which will improve
performance when added to training data. We posit
that an adversary may be able to introduce instances
which appear appealing to the selection algorithm but
have little impact on, or even degrade, classification ac-
curacy. Additionally, we believe the adversary may be
capable of accomplishing this manipulation even when
the adversarial instances are correctly labeled.

1Based on a series of observations in July and August 2014.



• Oracle Maliciousness Active learning traditionally
models the human as an oracle that can provide a cor-
rect label for any given instance in a constant amount
of time. In an adversarial context, a human may be
able to corrupt the labeling process by not always pro-
viding accurate labels.

• Exacerbation of Present Vulnerabilities The in-
troduction of active learning, in recognition of the re-
ality that not all samples can be expertly labeled, cre-
ates additional opportunity for attackers to exploit
presently known machine learning vulnerabilities. By
structuring samples to either appeal to or avoid the
query algorithm, the attacker may either control a
larger portion of the training data or decrease the like-
lihood of attack instances being included in training
data.

We examine each of these vulnerabilities in greater depth, as
well as the benefits and challenges of applying active learn-
ing. In Section 2 we describe the background and basic
setup of active learning and in Section 3 we motivate the
application of active learning in security contexts. Section 4
discusses potential vulnerabilities of active learning to ad-
versarial activity, and Section 5 presents experimental topics
and a scalable software framework for studying and devel-
oping active learning systems for security applications. In
Section 6 we discuss related work and in Section 7 we con-
clude.

2. BACKGROUND: ACTIVE LEARNING
Machine learning operates over a set of instances, such as

software binaries. A classifier is an algorithm that predicts
a label, such as benign or malicious, assigned to an instance.
A classifier is accurate when it predicts the correct label.

Traditionally, a classifier is trained using a learning al-
gorithm that starts by consuming a training set of labeled
instances (instances with their correct label supplied). The
algorithm then trains a classifier based on information in the
training set.

Active learning is a form of machine learning in which
the learning algorithm actively engages an oracle, such as
a human labeler, to request information in addition to the
original training set. (See [42] for a survey.) Most commonly,
it requests that the oracle label an instance of its selection.
The learner employs a query strategy to select the instance
for labeling. In some cases, the active learner may be free
to select any instance, even ones that do not occur in the
data set. In other cases, the learner is limited to some pool
of observed but unlabeled instances.

Active learning is useful in cases where there are many
unlabeled examples, but human labeling is expensive. This
situation is common in many security applications. For ex-
ample, machine learning could automate malware detection
and other attack detection, but training a model with suffi-
cient accuracy requires a large number of labeled instances
and labeling is expensive. Active learning supports the use
of various strategies to prioritize human labeling.

2.1 Query Strategies
The approach we focus on in our examples is uncertainty

sampling. This strategy is applicable every time a model
returns a meaningful real-valued score along with the pre-
dicted label. For such models, the most uncertain sample is

the one which receives the most uncertain score. For exam-
ple, in linear support vector machines, the score is taken to
be the distance of the instance to the separating hyperplane,
also called the margin. In this context, the most uncertain
scores are the smallest in absolute value.

Lewis et al. first introduced the uncertainty sampling
method in the context of text classification [28] but it has
since been successfully applied to information extraction
tasks [13, 43], a domain with abundant unlabeled data. Over-
all, it is both a popular and easy to implement method.

Other notable query strategies include density-based [43],
query-by-committee [44] and variance reduction methods [12].
We refer the interested reader to [42] for a complete overview.

2.2 Extensions
Here we consider extensions to the simple model of active

learning just presented.
Oracle Accuracy. Using active learning in an adver-

sarial setting raises the concern that the adversary might
compromise the oracle. For example, consider a system for
flagging inappropriate images using crowdsourcing for label-
ing the instances. Such a system could be vulnerable to some
of the labelers adversarially mislabeling the instances. While
these types of questions have been examined in reputation
systems [23, 32, 58] and crowdsourcing [27], they remain an
open issue in the context of active learning.

Noisy oracles, which may be present in both adversarial
and non-adversarial settings, present a related challenge for
active learning. While traditional active learning techniques
are not designed to be robust against noisy labeling, agnos-
tic active learning is designed with this in mind [3, 5, 16].
However, these works make assumptions, such as indepen-
dent and identically distributed data, that may not hold
in an adversarial setting. Although these works acknowl-
edge an adversary as a potential source of noise, along with
fundamental randomness in the data set or a misfit in label-
ing, none of them test agnostic active learning as a defense
against noise based attacks on an active learning system.

Feature Extraction Costs. The cost of altering and
measuring features is an additional consideration in the ad-
versarial setting. Adversaries may attempt to disguise their
malicious instances in manners that do not decrease their
effectiveness or incur other costs. Defenders prefer to iden-
tify malicious instances features that can be measured with
low cost. Prior research on adversarial machine learning
has studied these issues using game theory [8, 14, 24, 51]
or as a problem of reverse engineering classifiers [30, 36].
Other works have studied the cost of features in the set-
ting of active learning during either training [33] or during
testing [9, 20, 29, 62].

Batch Learning. Traditional active learning research
uses a sequential model in which each iteration selects a sin-
gle unlabeled sample to be labeled by the oracle and added
to the training data, followed by retraining after every itera-
tion. In applications where training is expensive this model
is impractical. Recent research has been interested in a batch
mode model in which each iteration selects a subset of the
unlabeled samples to have labeled by the oracle and added
to the training data, with retraining occurring after all in-
stances in the subset have been labeled and entered into the
training set [2, 10, 11, 21].

Feedback on Features. Active learners can query ora-
cles for information other than just labels or feature values.



Raghavan, Madani, and Jones proposed an active learning
system which in each iteration queries the oracle on both
an instance and a list of features [37, 38]. The oracle needs
to provide feedback both on what class the instance belongs
to and the relevance of each of the listed features. They
found that humans can rate the relevance of features more
quickly than they can instances, and that rating features can
improve the accuracy of the system.

3. ACTIVE LEARNING FOR SECURITY
Active learning offers an approach to handle a range of

common phenomena in security applications, including large
amounts of data, unlabeled or poorly labeled data and ad-
versarial drift.

Machine learning systems in security deal with a large
amount of data. For example, in the malware domain, dif-
ferent malware creation toolkits like Zeus [54], SpyEye [47],
Dendroid [48], make the process of creating, customizing and
re-packaging malware binaries easy. There has been a dra-
matic proliferation of new malware in the wild. In the first
quarter of 2014 alone, two million mobile malware and high-
risk apps were found [49]. Labeling new instances as quickly
as possible is important for the security of a system but
labeling every instance manually is impractical. We need
ways to prioritize instances to be labeled that have the most
impact on the dataset and classifier’s performance.

The accuracy of a machine learning system depends on the
quality of the training and test data. If the training data is
polluted, the system will be unable to distinguish between
malicious and benign instances. If the test data is polluted,
a poorly performing model might be chosen. Collecting high
quality labels can be costly as it requires expertise and time
for a human labeler. For example, high quality labeling is
one of bottlenecks of the malware classification. In 2009
the typical time window between a malware’s release and
its detection by AV software was 54 days and 15% of sam-
ples remain undetected after 180 days [15]. Active learning
provides systematic strategies to better allocate human re-
sources by identifying instances that have the most impact
on the system’s performance.

Unlike other domains, data in security applications suffer
from adversarial drift. Drift refers to the non-stationarity
of data where the data distribution changes over time. This
drift can be natural gradual drift, for example, changes to a
user’s preference over time, or adversarial drift where an ad-
versary changes the data to purposefully decrease the clas-
sification accuracy [14, 25, 53]. For example, using mal-
ware re-packaging toolkits, known as Fully Un-Detectable
or FUD crypters, malware vendors repackage malware to
evade anti-virus tools [7]. To handle drift and novel at-
tacks the system needs to be periodically retrained, a pro-
cess that requires labeling and model validation. Current
active learning methods can handle regular drift by using
randomization with uncertainty sampling [61], can handle
noisy labels generated by nonadaptive adversaries [3], and
by adaptive adversaries [18]. Yang considered such drift the-
oretically in a covariate shift setting [57]. Yang assumes that
data has pre-fixed dimensions and goes through a fixed se-
quence of distribution changes with a bounded amount of
drift. While theoretically appealing, it is unclear how these
assumptions are relevant in the practical context of intelli-
gent adversaries.

Several industrial classification systems are already using
active learning approaches to handle these issues. For ex-
ample, Google uses active learning approaches for labeling
malicious advertisements and phishing pages [41, 56]. The
Google anti-phishing system evaluates millions of potential
phishing pages everyday. Google prioritizes potential phish-
ing pages for human review based in part on PageRank,
claiming that this type of active learning minimizes the in-
stance labeling task.

While effective, active learning has its own limitations,
especially in the presence of an adversary. We discuss these
limitations in Section 4 and present a research agenda to
improve and augment active learning methods for security
applications in Section 5.

4. ADVERSARIAL ACTIVE LEARNING
Traditional machine learning developed in a setting which

did not account for an adversary, and consequently suffers
from a range of vulnerabilities [4]. Likewise, active learn-
ing has not traditionally considered adversarial activity, and
hence is likely to have a range of vulnerabilities. In this sec-
tion, we discuss several classes of likely vulnerabilities in ac-
tive learning which must be better understood and addressed
to robustly deploy active learning in security contexts. As
these have received limited attention in the literature [60],
they remain poorly understood and important areas for fu-
ture research.

We explore three types of attacks on active learning. First,
we consider attacks on how the active learner selects in-
stances for querying the oracle. Second, we consider settings
where an oracle may act maliciously. Finally, we consider
how active learning can exacerbate known attacks on ma-
chine learning techniques.

4.1 Query Strategy Robustness
We first demonstrate on a simple example how an attacker

can take considerable advantage of the query strategy.
Model setup. For visualization purposes, we work in

a continuous two dimensional feature space where the aim
is to learn a binary classifier. We suppose that the data is
generated by the following underlying process: let d > 0,
X ∈ R2 an instance and Y ∈ {−1; 1} its label. Let the data
distribution be

p(X, Y ) = p(X|Y )p(Y )

where Y ∼ Bernoulli(1/2) and X ∼ (Y d/2, 0) + N2. N2 is
the bivariate normal distribution centered at the origin, with
the identity covariance. In other words, this is a perfectly
label-balanced task, where the positive instances are nor-
mally distributed around (d/2, 0) and the negatives around
(−d/2, 0).

The aim is to learn a decision function f : R2 → {−1,+1}
that performs well on the task of predicting the label Y of a
given sample X. Here, we will quantify the quality of f by
its misclassification rate, or average number of misclassified
samples. If the distribution p(X, Y ) is available, one can
compute this number as

R(f) = E[1f(X)6=Y ]

where R is known as the expected 0/1-loss, or risk.
In our case, it is easy to prove that the optimal decision

rule f∗ which minimizes R is a “vertical” linear separator



(a) Uncertainty query strategy, without attack. Models shown after initial sampling, 1, 4, and 50 queries.

(b) Random query strategy, with attack. Models shown after initial sampling, 1, 4, and 50 queries.

(c) Uncertainty query strategy, with attack. Models shown after initial sampling, 1, 2, and 50 queries.

Figure 1: Model evolution during active learning. Selected points for training are drawn with larger blue diamond and red
circle marks, for respectively negative and positive instances. For the attack, p is set to 5% and the corresponding 95%
probability disks are shown.

coinciding with the Y axis:

f∗(X) =

{
−1 if X1 < 0

+1 else

R(f∗) = 1− Φ(d/2)

where Φ is the cumulative distribution function of the stan-
dard normal distribution.

In what follows, we chose d such that we know a good
separator exists. Namely, we set d = 4, giving a best case
misclassification rate R(f∗) ≈ 2.3%. We use a linear SVM
for the underlying learning algorithm, so that the class of
separators in which we perform our model search actually
contains f∗.

We initially randomly draw both 500 positive and negative
samples according to p(X|Y = ±1) and randomly reveal 5
positive and 5 negative labels, that is, we label 1% of the
data set. This data set of 10 labeled instances serves to build
the initial model. The learner then chooses an unlabeled
data point according to the query strategy and reveals the
true label. The new point is added to the training set and
a new model is computed. The process continues until we

have revealed the labeling of 5% of the data set; equivalent
to 50 queries.

In deployed systems, 1% of initially labeled samples is
not an unrealistic upper-bound when faced with hundreds
of thousands of samples per day. Similarly, our choice of
a 1,000 sample-size data set is in accordance with the low-
dimensionality of the data, where both theory and practice
show it is possible to approach excellent performance with
very limited data. We further note that in our experiments,
the size of the underlying data set has no importance, except
in the case of the randomized strategy in the presence of an
attacker.

We compare three active learning query strategies:

• a randomized strategy where an instance is selected
uniformly at random among all unlabeled instances,

• an uncertainty strategy where the unlabeled point clos-
est to the decision boundary is selected,

• a mixed strategy where we alternate between picking
a point at random and selecting the closest point from
round to round.



Attack setup. We suppose the attacker has the following
capabilities:

1. The attacker is able to estimate with arbitrary preci-
sion the decision function at every round of the active
learning.

2. The attacker knows the process generating the data,
namely p(X, Y ), but is not revealed the actual data
set, nor the randomly chosen initial 10 points.

3. At every round, the attacker can inject at most one
instance in the training set. The true label of the in-
stance is consistent with p(X, Y ) in the following sense.
For a given 0 < p < 1, the injected instance lies in the
disk of probability 1− p around the center of the nor-
mal distribution p(X|Y ) corresponding to its label.

Assumption (1) reflects the fact that in practice, an ad-
versary can repeatedly probe the system and obtain increas-
ingly good descriptions of the decision boundary. Assump-
tion (2) reflects the fact that the adversary has some general
knowledge about how benign and malicious instances typ-
ically look like, without specifically knowing the data set
used by the defender. Assumption (3) reflects the non-
stationarity of the learning process in real life, where the
attacker can forge new, either positive or negative samples
every day. The p value effectively constrains the attacker’s
capacity to forge very outlying instances of a given label.

Assumptions (1) and (2) are beneficial in terms of model
simplicity, but are potentially advantageous for the attacker.
We however notice that one can arbitrarily weaken both by
introducing exogenous parameters describing how much in-
formation the attacker possess about both the decision func-
tion (limited number of queries) and the probability distri-
bution (limited number of randomly drawn samples) without
changing the particular mechanics of the attack.

Attack strategy. Our attack is specifically designed for
the maximum uncertainty (closest point) strategy. We sup-
pose that the aim of the attacker is to maximally increase
the learned model risk, under the previous assumptions. For
the attacker to have any consequent influence on the active
learning process, he must inject points that lie on, or ar-
bitrarily close to, the decision boundary so that they get
selected. This is necessarily so because the attacker is un-
aware of the defender’s pool of samples, which might contain
points that are already very close to the boundary.

Let Dt be the set of all labeled instances available for
training at iteration t. Let a be the training algorithm which

maps a labeled dataset to a classifier in {−1,+1}R
2

. For-
mally, the attacker is interested in finding the instance (x, y)
which maximizes the risk after retraining with it at iteration
t+ 1:

max
(x,y) as assum. (3)

R (a (Dt ∪ {(x, y)}))

As the exact training set Dt is hidden, the attacker must
approximate the effect of adding a new training instance
on the risk of the model. To do so, the attacker is able
to compute R for any model as per assumption (2), and
knows ft by assumption (1). A simple heuristic to estimate
R(ft+1) is then to perturb the current model ft with the
given training instance, and compute the risk of the resulting
model. If wt,wt+1 denote the weight vectors corresponding
to ft, ft+1, the attacker can approximate the new decision

ft+1 by

wt+1 ≈ wt + δyx

for some δ > 0. Hence, to chose which point to inject, the
attacker can now solve a simpler problem. Letting f̃ be the
classifier associated with wt + δyx, the attacker now solves

max
(x,y) as assum. (3)

R(f̃)

In our case of concern, we see that the possible solutions lie
at the extremal points of the probability disks. If we further
require the points to lie closest to the decision boundary, we
have at most 4 candidate solutions to examine (the intersec-
tion of a line with two circles) and can do so efficiently. In
our attack, we use the δ = 0.01 and any small enough value
of δ will give similar results.

Figure 2: Excess Risk R(f)−R(f∗) of learned models with
different query strategies, with and without attack (p = 5%).
Average and standard errors for 50 runs per experiment are
shown.

Results. For each configuration of the query strategy,
we simulate the behavior of the system free of and under
attack. We summarize our findings in Figure 2, which lists
the excess risk of the final model, that is, the amount of
risk that is in excess of the minimal achievable risk on the
task. For the system which is not under attack, the maxi-
mum uncertainty strategy performs significantly better than
random choice. When the system is under attack, random-
ization of training samples becomes the best strategy, while
the maximum uncertainty choice suffers severe degradation.
For both of these, the mixed query strategy achieves middle
ground scores, but still incurs very high excess risk under at-
tack. Figure 1 helps visualize how the attack unfolds when
compared to a system free of attacks in the first row, and a
system using randomized query strategy in the second row.

4.2 Trusted Oracle
Active learning research traditionally assumes an oracle

that is able to label each submitted sample accurately and in
a constant amount of time. With the rise of crowdsourcing,
some work has relaxed the assumption of accurate labeling
and considered noisy oracle models of increasing complexity.
Initially, noisy oracle research began with a model in which



each oracle is correct with some uniform probability [45], and
expanded to include models where each oracle has a different
accuracy [55]. Prior work has also addressed practices for
assigning labels under the assumption that oracles vary in
accuracy and ground truth is unknown [17, 46].

Unfortunately, none of these models appropriately fit the
adversarial context. In the adversarial context, we must con-
sider that a labeler may be well behaved much of the time,
yet make certain well placed mistakes designed to cause spe-
cific classification errors after a model is trained. With the
rise of crowdsourcing, it is increasingly feasible for such ma-
licious labelers to enter the system. For example, spam de-
tection relies in part on users labeling messages as spam.
Similarly, many blackhat SEO techniques effectively rely on
crowdsourcing to manipulate the page rank algorithm.

4.3 ML Vulnerability Exacerbation
In Sections 1 and 3 we recognize the reality that not all

available data can be labeled for training in a timely fash-
ion. We advocate active learning techniques as a princi-
pled way of selecting the data which will be labeled and
used for training. The explicit incorporation of the training
data selection process into system design exposes heightened
risk from presently known vulnerabilities in machine learn-
ing techniques. Traditional machine learning vulnerabilities
are divided into two categories: exploratory vulnerabilities
which focus on modifying samples once a model has been
trained, and causative vulnerabilities which focus on modi-
fication of training data [22]. In this section, we discuss how
active learning is likely to exacerbate both causative and
exploratory vulnerabilities.

Exploratory Attacks. Lowd et al. present the good
words attack against spam filters, in which words indica-
tive of non-spam emails are added to spam emails to change
classification results [31]. Although the good words attack
was originally developed in the context of spam, the at-
tack can be implemented in other contexts which have high-
dimensional, sparse feature vectors. Lowd demonstrates that
the good words attack is highly effective against a fixed
model, but also finds that retraining the model with data in-
cluding updated spam messages that contain the good words
diminishes attack effectiveness.

The unfortunate reality, which is recognized by active
learning, that timely labels will not be available for all possi-
ble training data complicates this otherwise effective defense.
Effective retraining depends on the inclusion of spam mes-
sages continuing good words in the training corpus. How-
ever, if active learning fails to select the modified spam
messages for labeling during the retraining process, defenses
based on retraining will be ineffective.

Causative Attacks. Many attacks based on training
data manipulation have been proposed in previous litera-
ture. The dictionary attack operates against spam filters by
adding a broad range of words to spam emails to degrade
the overall quality of classification and make the spam filter
unusable [35]. The focused or correlated outlier attack also
operates against spam filters by adding specific words ex-
pected to appear in specific legitimate emails to spam emails
so that the legitimate emails are misclassified [22, 35]. Both
of these attacks can easily be extended to non-spam settings.
Lastly, the red herring attack introduces spurious features
to malicious instances that are designed to induce the clas-
sifier to strongly associate the spurious features with mali-

ciousness. Once the classifier has learned to associate the
spurious features with malicious content, the attacker can
remove the spurious features to prevent detection of mali-
cious content [22].

Although the specifics of each of these attacks varies, each
attack depends on the attacker controlling some portion of
the data used to train the classifier. For many production
scale applications of learning for security, such as spam fil-
tering, PDF filtering or malware detection, it may not be
feasible for an individual attacker to control a significant
portion of the training data. However, as the unrealistic as-
sumption that labels will be instantly available for all data is
removed, the attacker becomes able to control a larger por-
tion of the data through manipulation of the selection pro-
cess. Active learning formalizes the selection process and
will allow researches to better understand the viability of
and defend against causative attacks.

5. REALIZATION OF ACTIVE LEARNING
This section describes a set of experimental topics that we

believe are necessary for building an active learning system
for the security domain. It also describes a software frame-
work, SALT (Security-oriented Active Learning Testbed),
that we are building to conduct those experiments. Table 1
lists the experimental topics, under the categories of drift,
human integration, and query strategies.

5.1 Experimental Topics

Drift
Experimental Topic 1: Real-time Accuracy Moni-
toring. Perhaps the most important task surrounding a
practical machine learning system is constantly monitoring
its performance, not only in computational terms but also,
and more importantly, in its classification accuracy. One
can effectively do so by estimating the mean misclassifi-
cation cost given a representative set of labeled instances.
Unfortunately, since active learning incrementally builds a
labeled data set, such a data set is unsuitable for evaluation
purposes as it is dependently defined by the classifier to be
evaluated. A naive solution would be to build a second la-
beled data set in parallel, which would be unbiased. Such
an approach discards all information from the algorithm-
defined labeled data set. Alternatively, the evaluator could
create an all-new sample designed to efficiently estimate the
system’s performance [39, 40]. It would be interesting to
explore middle grounds where this information is partially
recycled for evaluation purposes in a safe, that is, unbiased
manner. This may involve “uniformizing” the initially bi-
ased sampling in under-represented regions of the observa-
tion space, by querying for those labels as in [26].

Experimental Topic 2: Accuracy Degradation Over
Time. The detailed investigation of the effects of non-
stationary time-ordered data may bring a better understand-
ing of the behavior of machine learning in our setting. In
particular, fundamental questions about the nature of drift
are related to the amount of information past data contains
about yet to come observations. While it is established that
classification performance degrades with time for a fixed
model in adversarial applications [52], a fundamental ques-
tion is to measure the system’s confidence in its mistakes. In
particular, low-confidence misclassifications may be a sign of



Drift
1. Real-time Accuracy Monitoring. The presence of drift combined with limited label availability

complicates accuracy measurement on fresh data. We need parsimonious sampling strategies to pro-
vide both the labels requested by the active learning itself and those necessary for a sound evaluation
of system performance.

2. Accuracy Degradation Over Time. By receiving data as an ordered stream, researchers should
be able to observe the rate of decrease in model accuracy as training data and models become stale.

3. Retraining Strategy. Given that models will become stale with time, researchers should be able to
experiment with different regiments for updating models. Policies could include retraining in response
to changes in the data or elapsed time.

Human Integration
4. Return on Human Effort. Given the expense of human effort, we need a system to allow exper-

imentation on both the return on fixed investments of human effort and policies for varied human
resource allocation.

5. Coping with Malicious Labels. For some applications, plentiful, low-quality labels may be avail-
able through untrusted techniques such as crowdsourcing that may admit malicious labelers. We
need a system to allow experimentation with attacks and defenses against malicious labelers.

6. Identifying Malicious Labelers. Given that malicious labelers may perform accurately in the
vast majority of cases and make very selective errors, standard noisy models may be poorly suited
to capture their malicious behavior.

Query Strategies
7. Active Feature Acquisition. In many cases, multiple forms of feature extraction with varied

costs may be available (e.g. static and dynamic analysis of malware). We need a system to allow
experimentation with varied policies for active feature acquisition.

8. Query Strategy Performance. Query strategies are vital to the system’s ability to learn a concept
and react to drift. We need a system to allow experimentation with varied query strategies.

9. Query Strategy Robustness. In addition to being effective, query strategies must be robust
against adversarial manipulation. We need a system to allow researchers to experiment with different
attack strategies.

Table 1: Specific experimental topics relating to active learning for security applications and in adversarial contexts.

mild drift, whereas many high-confidence misclassifications
may indicate fundamentally unpredictable novelties.

Experimental Topic 3: Retraining Strategy. Be-
cause of the performance degradation incurred by fixed mod-
els, ongoing retraining is necessary. The best strategy is a
function of many factors, including the amount of drift and
the amount of available human work. In this regard, we
are interested in comparing retraining strategies that are
combinations of time-based and data-driven. For instance,
periodic retraining might occur as a background process,
while daily data volume and classification accuracy mea-
sures might drive additional retraining phases as necessary.
Another interesting problem is to estimate the quality of the
new model in absence of labeled future data. For example,
it may be possible to predict the model’s performance dur-
ing its lifetime using data selected from recently observed
instances.

Human Integration
Experimental Topic 4: Return on Human Effort. In
a typical machine learning task, when we are progressively
given more and more labeled training data, we often observe
the accuracy of the trained model increases rapidly at first
but then the accuracy flattens — and we see diminishing
returns [6]. (We define the return as the amount of accuracy

improvement per human effort, measured either by time or
money.) Since human effort for labeling instances is costly,
we do not want to waste human effort when the return is
small. In our research agenda, we plan to develop query
strategies that buck the trend of diminishing returns, so that
we can improve model accuracy as much as possible before
diminishing return occurs. We also develop methods that
detect diminishing returns and stop acquiring costly labels
as soon as possible.

Experimental Topic 5: Coping with Malicious La-
bels. Using crowdsourcing in the place of a trusted oracle
creates the possibility of maliciously labeled instances. For
example, product review on Amazon.com admits low-quality
(and possibly malicious) labels [34]. To deal with such data,
we need to develop robust active learning algorithms that
are resilient to malicious labels, and to design active learn-
ing systems to cope with both benign errors and malicious
attacks.

Experimental Topic 6: Identifying Malicious La-
belers. Intelligent malicious labelers may collude together,
perform accurately in the vast majority of cases, and make
very selective errors. In such a case, standard noisy mod-
els are poorly suited to capture such adversarial behavior.
We need to define new metrics to quantify the “harmfulness”
of malicious labelers, and develop a framework and efficient
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Figure 3: Security-oriented Active Learning Testbed (SALT): A software framework for classification of a stream of samples,
including samples generated by an attacker in response to model state. SALT supports classification using both cheap and
expensive features, with resource allocation governed by a query strategy that mediates access to and usage of the labeling
oracle. We model the human oracle by appealing to the labels in the data set with perturbations added to model the effects
of expert, noisy and malicious labelers.

algorithms to accurately detect malicious labelers. The sys-
tem must be robust against malicious and strategic labelers,
with performance slowly and gracefully degrading with the
number of malicious agents.

Query Strategies
Experimental Topic 7: Active Feature Acquisition.
Extraction of some features can be expensive. For example,
computing the call graph of a binary may require dynamic
analysis. Thus, we must be able to perform cost-benefit
analyses to determine whether extracting a feature is worth
the cost. By knowing how each feature impacts accuracy, a
system could determine the most cost-effective features for
each instance and utilize a query strategy to improve feature
acquisition.

Experimental Topic 8: Query Strategy Performance.
As discussed in Section 2, the active learner can select in-
stances for labeling using numerous different methods, such
as uncertainty sampling, density base strategies, query-by-
committee, and variance reduction methods. The choice of
a query strategy can impact the system’s ability to find an
accurate decision boundary and to quickly respond to drift.
We must be able to test and monitor multiple query strate-
gies to compare their effectiveness.

Experimental Topic 9: Query Strategy Robust-
ness. In addition to responding to attacks against tradi-
tional learning algorithms, the query strategies themselves
must be robust against manipulation, such as the attack dis-
cussed in Section 4.1. We must be able to stress-test query
strategies under simulated attacks.

5.2 Security-oriented Active Learning Testbed
In this section, we present a software framework for engag-

ing in the experimental topics discussed in Section 5.1. Our
framework is the Security-oriented Active Learning Testbed,
or SALT. Figure 3 shows a block diagram of the SALT archi-
tecture. At a high level, SALT provides for experimentation
on time series data including modeling limited availability of
labeling resources and feature acquisition options with var-
ied costs. We discuss the role of each component of SALT
in investigating the topics in Section 5.1, and then provide
a brief discussion of a potential realization of SALT in a
distributed computing environment.

Data Stream. This component houses the data set used
for analysis. Preferably, a data set should have the following
properties:

• Timestamp for each instance

• Distribution of instances reflecting density as observed
in the real-world

Although these two properties can be difficult to achieve,
they are not without significant benefit, particularly in the
context of active learning. For example, note that a data
set that is simply a collection of unique malware binaries
will not have timestamp or distribution information. Times-
tamps are critical for the exploration of concepts related to
drift, such as real-time accuracy monitoring (Experimental
Topic 1), accuracy degradation (Experimental Topic 2), and
retraining strategy (Experimental Topic 3). Likewise, a sam-
ple distribution reflective of the real world is necessary for



evaluating the effectiveness of query strategies that strive to
place the highest emphasis on the most common threats.

Active Attacker. The attacker is located within the
data stream to allow simulation of an attacker capable of
fabricating samples designed to attack either the query se-
lection processes or the traditional machine learning compo-
nents of the system. We allow the attacker to insert attack
instances into the data stream as the analysis progresses. As
a matter of experimental design, the attacker could be given
access to the present model state, the ability to request clas-
sification of specific samples, or no ability to interact with
the present model at all. The active attacker module is use-
ful for the study of query strategy robustness (Experimental
Topic 9).

Classification Using Inexpensive/Expensive Fea-
tures. These sections of the SALT system contain the ba-
sic components of a machine learning classification work-
flow, including feature extraction, model training and pre-
diction. Multiple levels of feature extraction may improve
resource utilization by reserving more expensive forms of
analysis for instances with the greatest anticipated benefit.
For example, in the context of malware a“cheap”application
of static analysis may help to identify instances that repre-
sent known classes of malware. Then, a more expensive
application of dynamic analysis can be applied to remain-
ing instances to obtain classifications of greater certainty
for less well-known malware. SALT’s design containing two
classification workflows supports active feature acquisition
(Experimental Topic 7).

Query Strategy. The query strategy manages scarce
resources in the system, including queries to the human or-
acle and active feature acquisition. The query strategy is
responsible for selecting samples for both training and eval-
uation, and must balance resources between noisy and ex-
pert oracles. The query strategy also controls active fea-
ture acquisition by determining instances to prioritize for
expensive feature extraction. By instrumenting the query
strategy module and varying query behavior, SALT sup-
ports research on the return on human effort (Experimental
Topic 4), the vulnerability to malicious oracles (Experimen-
tal Topic 5), the identification of malicious labelers (Exper-
imental Topic 6), active feature acquisition (Experimental
Topic 7), query strategy performance (Experimental Topic 8),
and query strategy robustness (Experimental Topic 9).

Oracle Models. The oracle represents the involvement
of a human to label data. SALT presents three oracle profiles
corresponding to varied human resources; each profile may
be instantiated multiple times with varied parameters (e.g.
to vary accuracy as a function of oracle). We describe each
of the profiles below.

• Expert. This oracle represents the highly accurate la-
beling supplied by expensive, technical experts. These
experts may be used to check the work of and de-
velop reputations for noisy oracles, to handle difficult
instances, or to identify malicious oracles.

• Noisy. This oracle represents crowdsourced informa-
tion, as may be obtained from user reviews, submis-
sions (e.g. via a “spam” button), etc. A SALT im-
plementation could allow multiple noisy oracles with
accuracy varying as a function of oracle or instance.

• Malicious. This oracle represents labels supplied by
a strategically malicious party. The malicious labeler

could intentionally provide accurate labels for the ma-
jority of data while mislabeling specific, targeted sam-
ples. The malicious oracle component allows develop-
ment of techniques for identifying and copying with
malicious labelers (Experimental Topics 5 & 6).

We have begun implementation of the SALT framework
with a design prioritizing scalability and interaction with
data. We leverage the capabilities Spark, a system for dis-
tributed computation built on top of HDFS [59]. Spark of-
fers several services critical to our design and not available
in other distributed computation platforms. MLlib provides
distributed implementations of common learning algorithms
for rapid model generation over large amounts of data, as re-
quired by successive oracle queries and model retraining [1].
Spark also implements map-reduce functionality on data
held in memory. Computation over the entire data (held
in memory) can be initiated in an interactive fashion, al-
lowing researchers quantify attack and drift behaviors using
aggregate measurements over all instances.

6. RELATED WORK
While there has been much work on using machine learn-

ing in the face of an adversary (see [4] for an overview) and
on active learning in general (see [42] for a survey), there
has been relatively little work explicitly focused on active
learning and security. Here, we focus on prior work related
to using active learning in an adversarial setting.

Active Learning for Security. Active learning has ap-
peared in high-impact production systems. Sculley et al.
discuss Google’s use of active learning to detect adversar-
ial advertisements [41]. Google’s system stratifies instances
by language of the ad and whether the ad is new, recently
blocked, or neither. They bin the ads from each strata by
the probability of being adversarial. They randomly sample
from each bin of each strata adjusting the number of sam-
ples from each to obtain a representative sampling across all
assigned scores. For example, to behave similarly to uncer-
tainty sampling, they may favor bins with probabilities near
to 0.5.

Despite its use in practice, we have found little research
using active learning for security applications. Görnitz et
al. employ active learning in the setting of network intru-
sion detection [19]. They use active learning to select points
to label with the goal of improving the performance of a
SVM-based anomaly detection system. They find that ac-
tive learning improves the performance of the system when
facing malicious traffic that attempts to appear normal by
including common HTTP headers. Neither they nor Sculley
et al. study attacks specifically directed at active learning.

Adversarial Sample Creation. Using active learning
in an adversarial setting raises new challenges for the learn-
ing system. The one with which this work is primarily con-
cerned is that the adversary might craft its instances to af-
fect the sample the learner requests labels for. Zhao et al.
study an adversary’s ability to attack active learning in this
manner [60]. They examine how an adversary inserting or
removing clusters of instances can decrease the quality of
the instances sampled by the active learner for labeling.

To select the decoy instances to add they simulate a learn-
ing algorithm and add instances that have a high entropy
(uncertainty) under their classifier. Assuming that the at-
tacked active learner uses a similar learning algorithm and



opts to label instances with high uncertainty, the active
learner will select the attacker’s decoy instances. Since the
decoy instances are crafted to be misleading by the adver-
sary, they may lead the algorithm astray. They also select
instances to delete by maximizing entropy. Zhao et al. run
experiments to find that adding and deleting points in this
manner degrades the quality of an active learner.

7. CONCLUSION
Involving humans in the learning process is always ex-

pensive. Humans, even in crowdsourcing scenarios, are a
limited resource. Humans have limited capacity. Humans
make errors, sometimes maliciously. Active learning is an
approach to prioritizing issues that are presented to humans
in an attempt to best use people — a finite and sometimes
erroneous resource.

In this open problem paper, we discuss how the use of
active learning in security raises particular adversarial con-
cerns. These concerns lead to a number of open areas for
further investigation (see Table 1). We are proposing a par-
ticular software framework, SALT, to allow these experi-
ments. We believe that the availability of SALT will allow
the security community to conduct experiments that might
otherwise be impractical. In particular, SALT will allow an
experimenter to detect drift, to model humans as noisy or-
acles and to evaluate different query strategies. SALT will
allow experiments that otherwise would be impossible to fine
tune prioritization algorithms and predict optimal levels of
human resources.

We hope that this paper will help provoke discussion in
the AISec community about the role of active learning in
security, adversarial active learning, experiments in security
and active learning, and suggestions and critiques of our
proposed SALT software framework.
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